• Title/Summary/Keyword: Tumor specificity

Search Result 315, Processing Time 0.029 seconds

Diagnostic Agents for Oral and Maxillofacial Diseases (구강 질환 진단용 제제)

  • Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 1999
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of newer micromethodologies and increasing availability of immunological and molecular biological reagents. The outcome of researches in this field has already provided DNA probes and antibodies which can be used for diagnosing various kinds of diseases including inherited ones. This development can be also applied to diagnose diseases in oral and maxillofacial regions. Technological advances have yielded highly sensitive test methodologies so that low analyte concentration and small sample volume are no longer limiting factors. Therefore, saliva can be useful test fluid for an array of analytes. Salivary constituents of diagnostic significance include steroid hormones, antibodies, drugs, and tumor markers. Of the proteins present in saliva, viral-specific immunoglobulins are of the greatest diagnostic interest. The development of conjugates and antigens by recombinant DNA technique and peptide synthesis is necessary for clinical application. Several kits developed for the purpose of blood testing should be modified to permit their application to saliva. The final practical outcome of researches in diagnostic sciences will be various diagnostic agents which can be used for detection of bacteria and viruses, screening and diagnosis of diseases, genetic screening for forensic individual identification. For these purposes, collaboration researches and development between institutions and companies are essential.

  • PDF

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Cancer Treatment Using Multiphoton Photodynamic Therapy

  • Zakir Hossain, S.M.;Golam Azam, S.M.;Enayetul Babar, S.M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Photodynamic therapy (PDT), a newly established treatment for solid tumors, involves the systemic administration of a tumor localizing photosensitizer that is only activated when exposed to light of appropriate wavelength. Photoactivation of photosensitizer in the presence of oxygen results in the formation of highly cytotoxic molecular species, which precipitates necrosis. PDT has now become a promising means for the treatment of cancer due to its specificity, relatively minimal side effects, and inexpensive. However, the application of PDT has been restricted to the treatment of superficial lesions or the use of interstitial light delivery. A single photon generally activates the photochemical reaction in traditional PDT. However the use of multi photon excitation, where two or more photons simultaneously excite a photosensitizer, allows for the use of wavelengths twice as long. Such wavelengths exhibit better transmittance through tissue and thereby deeper penetration is achieved. This paper will review theoretical principles of multi photon excitation, challenges associated with multi photon PDT and update the current and future role of multi photon PDT in cancer.

Evaluation of Larynx Cancer via Chemometrics Assisted Raman Spectroscopy

  • Senol, Onur;Albayrak, Mevlut
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.150-153
    • /
    • 2019
  • Larynx cancer is a potentially terminal and severe type of neck and head cancer in which malignant cells start to grow and spread upwards in the larynx, or voice box. Smoking tobacco, drinking hot beverages and drinking alcohol are the main risk factors for these tumors. In this study, we aimed to develop a precise, accurate and rapid chemometrics assisted Raman spectroscopy method for diagnosis of larynx cancer in deparaffinized tissue samples. In the proposed method, samples were deparaffinized and 20 microns of each tissue were located on a coverslip. Both healthy (n = 13) and cancerous tissues (n = 13) were exposed to a Raman laser (785 nm) and excitations were recorded between wavenumbers of $50{\sim}1500cm^{-1}$. An Orthogonal Partial Least Square algorithm was applied to evaluate the Raman spectrum obtained. Sensitivity and specificity of the proposed method is high enough with the aid of Principal Component Analysis (PCA) to test the whole model. Healthy and cancerous tissues were accurately and precisely clustered. A rapid, easy and precise diagnosis algorithm was developed for larynx cancer. By this method, some useful data about differences in biomolecules of each group (phospholipids, amides, tyrosine, phenylalanine collagen etc.) was also obtained from the spectra. It is claimed that the optimized method has a great potential for clustering and separating tumor tissues from healthy ones. This novel, rapid, precise and objective diagnosis method may be an alternative for the conventional methods in literature for diagnosis of larynx cancer.

Multimodal MRI analysis model based on deep neural network for glioma grading classification (신경교종 등급 분류를 위한 심층신경망 기반 멀티모달 MRI 영상 분석 모델)

  • Kim, Jonghun;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.425-427
    • /
    • 2022
  • The grade of glioma is important information related to survival and thus is important to classify the grade of glioma before treatment to evaluate tumor progression and treatment planning. Glioma grading is mostly divided into high-grade glioma (HGG) and low-grade glioma (LGG). In this study, image preprocessing techniques are applied to analyze magnetic resonance imaging (MRI) using the deep neural network model. Classification performance of the deep neural network model is evaluated. The highest-performance EfficientNet-B6 model shows results of accuracy 0.9046, sensitivity 0.9570, specificity 0.7976, AUC 0.8702, and F1-Score 0.8152 in 5-fold cross-validation.

  • PDF

Improved Specificity of $^{18}F-FDG$ PET/CT for Lymph Node Staging of Non-Small Cell Lung Cancer Considering Calcified Lymph Node as Benign (비소세포 폐암에서 석회화 림프절을 양성으로 보았을 때 $^{18}F-FDG$ PET/CT의 특이도 향상)

  • Kwon, Seong-Young;Seo, Young-Soon;Min, Jung-Joon;Song, Ho-Chun;Na, Kook-Joo;Choi, Chan;Kim, Young-Chul;Kim, Yun-Hyun;Bom, Hee-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Purpose: We evaluated the diagnostic value of $^{18}F-FDG$ PET/CT (PET/CT) in lymph node staging of non-small cell lung cancer (NSCLC) considering calcification and histologic types as well as FDG uptake. Materials and Methods: Fifty-three patients (38 men, 15 women; mean age, 62 years) with NSCLC underwent surgical resection (tumor resection and lymph node dissection) after PET/CT. After surgery, we compared PET/CT results with the biopsy results, and analyzed lymph node metastases, based on histologic types. PET diagnosis of lymph node metastasis was determined by maximum SUV (maxSUV) > 3.0, and PET/CT diagnosis was determined by maxSUV > 3.0 without lymph node calcification. Results: By PET diagnosis, the sensitivity, specificity, and accuracy of overall lymph node staging were 45% (13 of 29), 91% (228 of 252), and 86% (241 of 281). Specificity was 91% in both squamous cell carcinoma and adenocarcinoma, while sensitivity was 71% in squamous cell carcinoma and 36% in adenocarcinoma. When we excluded calcified lymph node with maxSUV > 3.0 from metastasis by PET/CT diagnosis, specificity improved to 98% in squamous cell carcinoma and 97% in adenocarcinoma. The degree of improvement was not dependent on histologic types. Conclusion: PET/CT improved specificity of lymph node staging by reducing false positive lymph node regardless of histologic types of NSCLC.

Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods (간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석)

  • Kim, Heejin;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Ji, Young Hoon;Yi, Chul-Young;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • The surgical resection was occurred mainly in liver metastasis before the development of radiation therapy techniques. Recently, Radiation therapy is increased gradually due to the development of radiation dose delivery techniques. 18F-FDG PET image showed better sensitivity and specificity in liver metastasis detection. This image modality is important in the radiation treatment with planning CT for tumor delineation. In this study, we applied automatic image segmentation methods on PET image of liver metastasis and examined the impact of image factors on these methods. We selected the patients who were received the radiation therapy and 18F-FDG PET/CT in Korea Cancer Center Hospital from 2009 to 2012. Then, three kinds of image segmentation methods had been applied; The relative threshold method, the Gradient method and the region growing method. Based on these results, we performed statistical analysis in two directions. 1. comparison of GTV and image segmentation results. 2. performance of regression analysis for relation between image factor affecting image segmentation techniques. The mean volume of GTV was $60.9{\pm}65.9$ cc and the $GTV_{40%}$ was $22.43{\pm}35.27$ cc, and the $GTV_{50%}$ was $10.11{\pm}17.92$ cc, the $GTV_{RG}$ was $32.89{\pm}36.8$4 cc, the $GTV_{GD}$ was $30.34{\pm}35.77$ cc, respectively. The most similar segmentation method with the GTV result was the region growing method. For the quantitative analysis of the image factors which influenced on the region growing method, we used the standardized coefficient ${\beta}$, factors affecting the region growing method show GTV, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR in order. The result of the region growing (automatic segmentation) method showed the most similar result with the CT based GTV and the region growing method was affected by image factors. If we define the tumor volume by the auto image segmentation method which reflect the PET image parameters, more accurate and consistent tumor contouring can be done. And we can irradiate the optimized radiation dose to the cancer, ultimately.

Diagnostic Utility of MAGE Expression in Exudative Pleural Effusion (삼출성 흉수에서 악성 감별을 위한 MAGE 유전자 검출의 의의)

  • Kim, Kyung Chan;Seo, Chang Gyun;Park, Sun Hyo;Choi, Won-Il;Han, Seung Beom;Jeon, Young June;Park, Jong-Wook;Jeon, Chang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.159-168
    • /
    • 2004
  • Background : In recent years, numerous human tumor specific antigens such as melanoma antigen gene(MAGE) that is recognized by autologous cytotoxic T lymphocytes have been identified. MAGE is expressed in many human malignancies in various organs, such as lung, breast, stomach, esophagus and leukemia. Therefore MAGE has been studied widely for tumor diagnosis and immunotherapy. But, so far there were no clinical studies evaluating the role of MAGE in pleural effusion. We investigated the expression of MAGE in the patients with exudative pleural effusion for it's diagnostic utility and the results were compared with those of cytologic examinations. Methods : Diagnostic thoracentesis was performed in 44 consecutive patients with exudative pleural effusion during 6 months. We examined the expression of MAGE and cytology with the obtained pleural effusion. Expression of MAGE was interpreted by means of a commercial kit using RT-PCR method. Enrolled patients were divided into two groups such as malignant and benign and we analyzed its' sensitivity and specificity. Results : There were no significant differences between two groups in age, sex, white blood cell counts in pleural fluid, pleural fluid/serum protein ratio and pleural fluid/serum LDH ratio. The sensitivity and specificity of MAGE were 72.2% and 96.2% respectively and the positive predictive value and negative predictive value of MAGE were also 92.9% and 83.3% respectively. The sensitivity and negative predictive value of cytologic examinations were 66.7% and 81.3% respectively. There were no significant differences between sensitivities of MAGE and cytologic examinations but false positive result of MAGE was found in 1 case of tuberculous pleurisy. Conclusion : MAGE is a sensitive and specific marker for the differential diagnosis between benign and malignant effusion in patients with exudative pleural effusion. And MAGE would provide the equal sensitivity compared with that of cytologic examination in patients with malignant pleural effusion if 5mL of the pleural fluid is examined.

Mini-Array of Multiple Tumor-associated Antigens (TAAs) in the Immunodiagnosis of Esophageal Cancer

  • Qin, Jie-Jie;Wang, Xiao-Rui;Wang, Peng;Ren, Peng-Fei;Shi, Jian-Xiang;Zhang, Hong-Fei;Xia, Jun-Fen;Wang, Kai-Juan;Song, Chun-Hua;Dai, Li-Ping;Zhang, Jian-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2635-2640
    • /
    • 2014
  • Sera of cancer patients may contain antibodies that react with a unique group of autologous cellular antigens called tumor-associated antigens (TAAs). The present study aimed to determine whether a mini-array of multiple TAAs would enhance antibody detection and be a useful approach in esophageal cancer detection and diagnosis. Our mini-array of multiple TAAs consisted of eleven antigens, p53, pl6, Impl, CyclinB1, C-myc, RalA, p62, Survivin, Koc, CyclinD1 and CyclinE full-length recombinant proteins. Enzyme-linked immunosorbent assays (ELISA) were used to detect autoantibodies against eleven selected TAAs in 174 sera from patients with esophageal cancer, as well as 242 sera from normal individuals. In addition, positive results of ELISA were confirmed by Western blotting. In a parallel screening trial, with the successive addition of antigen to a final total of eleven TAAs, there was a stepwise increase in positive antibody reactions. The eleven TAAs were the best parallel combination, and the sensitivity and specificity in diagnosing esophageal cancer was 75.3% and 81.0%, respectively. The positive and negative predictive values were 74.0% and 82.0%, respectively, indicating that the parallel assay of eleven TAAs raised the diagnostic precision significantly. In addition, the levels of antibodies to seven antigens, comprising p53, Impl, C-myc, RalA, p62, Survivin, and CyclinD1, were significantly different in various stages of esophageal cancer, which showed that autoantibodies may be involved in the pathogenesis and progression of esophageal cancer. All in all, this study further supports our previous hypothesis that a combination of antibodies might acquire higher sensitivity for the diagnosis of certain types of cancer. A customized mini-array of multiple carefully-selected TAAs is able to enhance autoantibody detection in the immunodiagnosis of esophageal cancer and autoantibodies to TAAs might be reference indicators of clinical stage.