• 제목/요약/키워드: Tumor necrosis factor inhibitor

검색결과 203건 처리시간 0.029초

펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구 (Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells)

  • 정지영;손용해;김보영;김관회
    • 생명과학회지
    • /
    • 제29권11호
    • /
    • pp.1251-1257
    • /
    • 2019
  • 본 연구에서는 펩티도글리칸이 단핵세포의 $TNF-{\alpha}$ 발현에 미치는 영향을 조사하였고, 또한 펩티도글리칸에 의한 $TNF-{\alpha}$ 발현에 관련된 세포의 요소들을 연구하였다. 사람의 단핵세포주인 THP-1 세포를 펩티도글리칸에 노출시키는 경우 $TNF-{\alpha}$ 분비 증가뿐만 아니라 $TNF-{\alpha}$ 유전자 전사를 유도하는 결과를 가져왔다. TLR-2/4의 억제제인 OxPAPC은 펩티도글리칸에 의한 $TNF-{\alpha}$의 발현을 저해하였다. 그리고 U0126, SB202190, SP6001250, LY294002, Akti IV, rapamycin, NAC, DPI 같은 약리학적 저해제 또한 $TNF-{\alpha}$ 발현을 유전자/단백질 수준에서 상당히 약화시켰다. 그러나 polymyxin B는 $TNF-{\alpha}$ 발현에 영향을 주지않았다. 따라서 펩티도글리칸이 TLR-2, PI3K, Akt, mTOR, MAPKs, ROS 등을 통하여 단핵세포의 $TNF-{\alpha}$ 발현을 증가시킴을 확인하였다.

Tumor Necrosis Factor-alpha 저해제가 결핵 발생에 미치는 영향 (Effects of Tumor Necrosis Factor-alpha Inhibitors on the Incidence of Tuberculosis)

  • 박현진;최보윤;손민지;한나영;김인화;오정미
    • 한국임상약학회지
    • /
    • 제28권4호
    • /
    • pp.333-341
    • /
    • 2018
  • Objective: Tumor necrosis factor-alpha (TNF-alpha) inhibitors are used as a treatment in various immune-mediated inflammatory diseases (IMIDs). Tuberculosis (TB) risk is reported in several meta-analyses in patients treated with TNF-alpha inhibitors. The purpose of this study is to collect, review, and evaluate the TB risk in TNF-alpha inhibitors according to IMIDs indications and between soluble-receptor TNF-alpha inhibitor and monoclonal-antibody TNF-alpha inhibitors. Methods: A systematic literature search on systematic reviews and meta-analyses was performed in PubMed, MEDLINE, Cochrane library, and EMBASE. We identified meta-analyses that evaluated TB infection risk of TNF-alpha inhibitors in IMIDs patients. Results: Thirteen meta-analyses including 41 study results were included in this umbrella review. IMIDs patients treated with TNF-alpha inhibitors had an increased risk of TB than control group (placebo with or without standard therapy patients) (relative risk ratio (RR) 2.057, 95% confidence interval (CI) 1.697 to 2.495). Among them, RA patients with TNF-alpha inhibitors had a higher risk of TB than control group (RR 1.847, 95% CI 1.385 to 2.464), and non-RA patients with TNF-alpha inhibitors had an increased risk of TB (RR 2.236, 95% CI 1.284 to 3.894). In subgroup analysis on TB risk between soluble-receptor TNF-alpha inhibitor and monoclonal-antibody TNF-alpha inhibitors in RA patients, the analysis indicated that monoclonal-antibody TNF-alpha inhibitors had higher risk of TB than soluble-receptor TNF-alpha inhibitor (RR 2.880, 95% CI 1.730 to 4.792). Conclusion: This umbrella review confirms that the risk of TB is significantly increased in TNF-alpha inhibitor treated patients compared to control group.

Suppressive Effects of a Truncated Inhibitor K562 Protein-Derived Peptide on Two Pro-inflammatory Cytokines, IL-17 and TNF-α

  • Hwang, Jong Tae;Yu, Ji Won;Nam, Hee Jin;Song, Sun Kwang;Sung, Woo Yong;Kim, Yongae;Cho, Jang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1810-1818
    • /
    • 2020
  • Inhibitor K562 (IK) protein was first isolated from the culture medium of K562 cells, a leukemia cell line, and is an inhibitory regulator of interferon-γ-induced major histocompatibility complex class II expression. Recently, exogenous truncated IK (tIK) protein showed potential as a therapeutic agent for inflammation-related diseases. In this study, we designed a novel putative anti-inflammatory peptide derived from tIK protein based on homology modeling of the human interleukin-10 (hIL-10) structure, and investigated whether the peptide exerted inhibitory effects against pro-inflammatory cytokines such as IL-17 and tumor necrosis factor-α (TNF-α). The peptide contains key residues involved in binding hIL-10 to the IL-10 receptor, and exerted strong inhibitory effects on IL-17 (43.8%) and TNF-α (50.7%). In addition, we used circular dichroism spectroscopy to confirm that the peptide is usually present in a random coil configuration in aqueous solution. In terms of toxicity, the peptide was found to be biologically safe. The mechanisms by which the short peptide derived from human tIK protein exerts inhibitory effects against IL-17 and TNF-α should be explored further. We also evaluated the feasibility of using this novel peptide in skincare products.

Gartanin enhances TRAIL-mediated liver cancer cell death through DR5 upregulation and autophagy activation

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.53-59
    • /
    • 2023
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has no effect on normal cells, but selectively can induce apoptosis in tumor cells. Gartanin, a xanthone compound in mangosteen, has been shown to inhibit cancer cell growth by arresting the cell cycle and inducing autophage. In this study, we revealed that gartanin can sensitize TRAIL-induced human liver cancer cell death. We also found that gartanin enhances DR5 expression, a death receptor for TRAIL. This effect appears to be related to CHOP activation associated with the response of endoplasmic reticulum stress. Gartanin treatment also inhibited p62 protein expression and cleaved LC3 to activate autophagy flux, which is related with TRAIL-induced cell death. Pretreatment with autophagy flux inhibitor, LY294002, inhibited gartanin-induced DR5 expression. In summary, our results reveal that the combined treatment of gartanin and TRAIL can be a valuable tool for cancer treatment.

Ethanol extract of Callophyllis japonica enhances nitric oxide and tumor necrosis factor-alpha production in mouse macrophage cell line, RAW 264.7 cells

  • Ahn, Mee-Jung;Park, Dal-Soo;Yang, Won-Hyung;Go, Gyung-Min;Kim, Hyung-Min;Hyun, Jin-Won;Park, Jae-Woo;Shin, Taek-Yun
    • Advances in Traditional Medicine
    • /
    • 제7권4호
    • /
    • pp.341-347
    • /
    • 2007
  • Red seaweed (Callophyllis japonica) has long formed part of the diet of Asians, but the pharmacological properties of this plant have not been evaluated. In this study, we examined the effect of an ethanol extract of C. japonica on the generation of nitric oxide (NO) in RAW 264.7 cells. The C. japonica extract increased the generation of NO and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), which were detected by the Griess method and an enzyme-linked immunosorbent assay, respectively. The increased production of NO by C. japonica extract was inhibited by $N^G$-monomethyl-L-arginine ($100{\mu}M$), a specific inhibitor of NO production in the L-arginine-dependent pathway, and by the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) inhibitor, pyrrolidine dithiocarbamate ($10-100{\mu}M$) in a dose-dependent manner. These findings demonstrate that C. japonica extract stimulates the production of NO and $TNF-{\alpha}$ in RAW 264.7 cells through the activation of $NF-{\kappa}B$ and that this extract might also inhibit the growth of the human leukemic cells.

Tumor necrosis factor-α에 의한 골수 유래 중간엽 줄기세포의 골세포로의 분화 촉진에서 JNK의 역할 (Tumor Necrosis factor-α Promotes Osteogenesis of Human Bone Marrow-derived Mesenchymal Stem Cells through JNK-dependent Pathway)

  • 김미라;송해영;김재호
    • 생명과학회지
    • /
    • 제16권7호
    • /
    • pp.1207-1213
    • /
    • 2006
  • Tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$는 염증성 골질환에서의 골조직의 손실과 밀접한 관련이 있다. 본 연구에서는 인체 골수 유래 중간엽 줄기세포의 골세포로의 분화과정에 대한 $TNF-{\alpha}$의 영향을 조사하였다. $TNF-{\alpha}$는 골수 유래 중간엽 줄기세포의 골세포로의 분화를 나타내는 표시인 세포외 무기질 축적과 alkaline phosphatase의 발현의 증가를 일으켰으며 2ng/ml의 농도에서 최대의 증가를 나타내었다. $TNF-{\alpha}$에 의한 골세포로의 분화는 $NF_kB$의 저해제에 의해서는 영향받지 않았으나 JNK 특이 저해제인 SP600125에 의해 완벽하게 억제되었다. 이는 $TNF-{\alpha}$에 의한 골수 유래 중간엽 줄기세포의 골세포로의 분화과정에 JNK가 중요한 역할을 한다는 것을 제시한다.

Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation

  • UDDIN MD. NAZIM;SANG‑YOUEL PARK
    • International Journal of Oncology
    • /
    • 제54권2호
    • /
    • pp.665-672
    • /
    • 2019
  • The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a dynamic cytokine that initiates the apoptosis of cancer cells, but exhibits little or no toxicity in normal cells. Luteolin is a flavonoid compound frequently used in the treatment of cancer. In the current study, we demonstrate that treatment with luteolin and TRAIL exerts a synergistic effect and the mechanisms on TRAIL-resistant Huh7 cells. The results demonstrated that luteolin induced an autophagic flux in human liver cancer cells. The attenuation of the autophagic flux by applying the specific inhibitor of autophagy, chloroquine, significantly suppressed DR5 expression. Treatment with genetically modified autophagy-related 5 siRNA abrogated the luteolin-mediated sensitizing effect of TRAIL. Furthermore, pre-treatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly attenuated the luteolin-induced upregulation of DR5 expression, thereby suggesting that JNK activation promotes DR5 expression. Our findings also revealed that Akt phosphorylation was required for TRAIL sensitization. On the whole, the findings of this study indicated that luteolin effectively enhanced TRAIL-initiated apoptosis, and that these effects were likely to be mediated by autophagy and JNK-mediated DR5 expression.

Inhibitory Effect of Esculetin on the Inducuble Nitric Oxide Synthase Expression in TNF-stimulated 3T3-L1 Adipocytes

  • Yang, Jeong-Yeh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권5호
    • /
    • pp.283-287
    • /
    • 2003
  • While nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is beneficial for host survival, it is also detrimental to the host. Thus, regulation of iNOS gene expression may be an effective therapeutic strategy for the prevention of unwanted reactions at various pathologic conditions. During the screening process for the possible iNOS regulators, we observed that esculetin is a potent inhibitor of cytokine-induced iNOS expression. The treatment of 3T3-L1 adipocytes with the tumor necrosis factor-${\alpha}$ (TNF) induced iNOS expression, leading to enhanced NO production. TNF-induced NO production was inhibited by esculetin in a dose-dependent manner. Esculetin inhibited the TNF-induced NO production at the transcriptional level through suppression of iNOS mRNA and subsequent iNOS protein expression. These results suggest esculetin, a component of natural products, as a naturally occurring, nontoxic means to attenuate iNOS expression and NO-mediated cytotoxicity.

Tumor necrosis factor α-converting enzyme inhibitor attenuates lipopolysaccharide-induced reactive oxygen species and mitogen-activated protein kinase expression in human renal proximal tubule epithelial cells

  • Bae, Eun Hui;Kim, In Jin;Choi, Hong Sang;Kim, Ha Yeon;Kim, Chang Seong;Ma, Seong Kwon;Kim, In S.;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.135-143
    • /
    • 2018
  • Tumor necrosis $factor-{\alpha}$ ($TNF{\alpha}$) and the angiotensin system are involved in inflammatory diseases and may contribute to acute kidney injury. We investigated the mechanisms by which $TNF{\alpha}$-converting enzyme (TACE) contributes to lipopolysaccharide (LPS)-induced renal inflammation and the effect of TACE inhibitor treatment on LPS-induced cellular injury in human renal proximal tubule epithelial (HK-2) cells. Mice were treated with LPS (10 mg/kg, i.p.) and HK-2 cells were cultured with or without LPS ($10{\mu}g/ml$) in the presence or absence of a type 1 TACE inhibitor ($1{\mu}M$) or type 2 TACE inhibitor ($10{\mu}M$). LPS treatment induced increased serum creatinine, $TNF{\alpha}$, and urinary neutrophil gelatinase-associated lipocalin. Angiotensin II type 1 receptor, mitogen activated protein kinase (MAPK), and TACE increased, while angiotensin-converting enzyme-2 (ACE2) expression decreased in LPS-induced acute kidney injury and LPS-treated HK-2 cells. LPS induced reactive oxygen species and the down-regulation of ACE2, and these responses were prevented by TACE inhibitors in HK-2 cells. TACE inhibitors increased cell viability in LPS-treated HK-2 cells and attenuated oxidative stress and inflammatory cytokines. Our findings indicate that LPS activates renin angiotensin system components via the activation of TACE. Furthermore, inhibitors of TACE are potential therapeutic agents for kidney injury.

강화사자발쑥의 마크로파지 RAW 264.7세포에 대한 Tumor Necrosis Factor-$\alpha$, Prostaglandin $E_2$, Cyclooxygenase-2 및 LPS 유도 Nitric Oxide 생성 저해 (Extracts of Artemisia princeps Pampanini Inhibit Lipopolysaccharide-induced Nitric Oxide, Cyclooxygenase-2, Prostaglandin $E_2$, and Tumor Necrosis Factor-$\alpha$ Production from Murine Macrophage RAW 264.7 Cells)

  • 윤준용;최세영;박표잠;정해곤;신흥묵;석경호;임병우
    • 한국약용작물학회지
    • /
    • 제16권5호
    • /
    • pp.326-331
    • /
    • 2008
  • To search for immunoactive natural products exerting anti-inflammatory activity, we have evaluated the effects on the water extracts of Artemisia princeps Pampanini (APP) on lipopolysaccharide-induced nitric oxide (NO), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), and prostaglandin $E_2$ ($PGE_2$) production by RAW 264.7 macrophage cell line. Our data indicate that this extract is a potent inhibitor of NO production and it also significantly decreased PGE2 and TNF-$\alpha$ production. Consistent with these results, the protein and mRNA expression level of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was inhibited by water extracts of APP in a dose-dependent manner. These results suggest that APP may exert anti-inflammatory and analgesic effects possibly by suppressing the inducible NO synthase and COX-2 expressions.