• Title/Summary/Keyword: Tumor immunity

Search Result 295, Processing Time 0.029 seconds

Antitumor Effects of Glycoportein Extracted from Sea Cucumber (Stichopus japonicus)

  • Moon, Jeung-Hye;Ryu, Hong-Sool;Suh, Jae-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.117-121
    • /
    • 1999
  • The anititumor and immunologic activities of the glycoproteins extracted from sea cucumber (Stichopus japonicus) on mice bearing sarcoma 180 cells were investigated . Maximum tumor suppression (64%) occurred at the dose of 100mg glycoprotein/kg. The highest prolongation ratio was achieved at the level of 100mg/kg an dincreased by 395 more than that of control. Glycoproteins from sea cucumber exhibited direct cytotoxic effect on the tumor cells. Dose dependent increase of leucocyte, peritoneal exudate cell and weights of immunoorgans revealed the improvement of immunity. When the glycoportein-administered group was compared with the control, a significant difference was not noted in the clinico-chemical values such as S-GOT, S-GPT , alkaline phoshatse activity, total protein, cholesterol, triglyceride, urea nitrogen and glucose levels in blood. These results suggests that the antitumor activity of sea cucumber glycoprotein is associated with activation of cells in the immune system.

  • PDF

Anti-tumor Efficacy of a Hepatocellular Carcinoma Vaccine Based on Dendritic Cells Combined with Tumor-derived Autophagosomes in Murine Models

  • Su, Shu;Zhou, Hao;Xue, Meng;Liu, Jing-Yu;Ding, Lei;Cao, Meng;Zhou, Zhen-Xian;Hu, Hong-Min;Wang, Li-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3109-3116
    • /
    • 2013
  • The majority of hepatocellular carcinoma (HCC) patients have a poor prognosis with current therapies, and new approaches are urgently needed. We have developed a novel therapeutic cancer vaccine platform based on tumor cell derived autophagosomes (DRibbles) for cancer immunotherapy. We here evaluated the effectiveness of DRibbles-pulsed dendritic cell (DC) immunization to induce anti-tumor immunity in BALB/c mouse HCC and humanized HCC mouse models generated by transplantation of human HCC cells (HepG2) into BALB/c-nu mice. DRibbles were enriched from H22 or BNL cells, BALB/c-derived HCC cell lines, by inducing autophagy and blocking protein degradation. DRibbles-pulsed DC immunization induced a specific T cell response against HCC and resulted in significant inhibition of tumor growth compared to mice treated with DCs alone. Antitumor efficacy of the DCs-DRibbles vaccine was also demonstrated in a humanized HCC mouse model. The results indicated that HCC/DRibbles-pulsed DCs immunotherapy might be useful for suppressing the growth of residual tumors after primary therapy of human HCC.

Immune Tolerance in Murine Islet Transplantation Across HY Disparity (HY 항원 불일치 췌도 이식에 의한 면역 관용의 유도)

  • Choi, Seung-Eun;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • Background: Minor histocompatibility HY antigen, as a transplantation antigen, has been known to cause graft rejection in MHC (major histocompatibility complex) matched donor-recipient. The aim of our study is to investigate the role of male antigen (HY) disparity on MHC matched pancreatic islet transplantation and to examine the mechanism of the immune reaction. Methods: Pancreatic islets were isolated and purified by collagen digestion followed by Ficoll gradient. The isolated islets of male C57BL6/J were transplanted underneath the kidney capsule of syngeneic female mice rendered diabetic with streptozotocine. Blood glucose was monitored for the rejection of engrafted islets. After certain period of time, tail to flank skin transplantation was performed either on mouse transplanted with HY mismatched islets or on sham treated mouse. The rejection was monitored by scoring gross pathology of the engrafted skin. Results: HY mismatched islets survived more than 300 days in 14 out of 15 mice. The acceptance of second party graft (male B6 islets) and the rejection of third party graft (male BALB/c islets) in these mice suggested the tolerance to islets with HY disparity. B6 Skin with HY disparity was rejected on day $25{\pm}7$. However, HY mismatched skin transplanted on the mice tolerated to HY mismatched islets survived more than 240 days. Tetramer staining in these mice indicated the CTL recognizing MHC Db/Uty was not deleted or anergized. Conclusion: The islet transplantation across HY disparity induced tolerance to HY antigen in C57BL6 mouse, which in turn induced tolerance to HY mismatched skin, which otherwise would be rejected within 25 days. The MHC tetramer staining suggested the underlying mechanisms would not be clonal deletion or anergy.

Studies on Development of New Basidiomycetes by Protoplast Fusion and Nuclear Transfer II - The Effects of the Components of the Protoplast Fusants on Mouse Immune Cells - (원형질체 융합 및 핵전이에 의한 새로운 담자균류의 개발에 관한 연구(II) - 융합균사체의 항암성분이 생쥐의 면역세포에 미치는 영향 -)

  • Moon, Chul;Kim, Chae-Kyun;Yoon, Jong-Myung;Shim, Mi-Ja;Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.3
    • /
    • pp.231-237
    • /
    • 1996
  • The antitumor components of the protoplast fusants of Lentinula edodes and Ganoderma lucidum were examined for immunological activity to elucidate the mechanism of their antitumor activity. They did not show any direct cytotoxicity against tumor cells. But being examined for immunopotentiation activity, they increased the number of colonies in the bone marrow stem cells to 3.0 times. They also increased the activities of the acid phosphatase in activated macrophages to 2.1 times and the secretion of nitric oxide in RAW 264.7 to 2.2 times, respectively. They activated the components of the alternative complement pathway. In humoral immunity. they increased the activities of the alkaline phosphatase in differentiated B cells to 1.6 times and the number of plaque forming cells to 1.8 times, respectively. In cellular immunity, they restored the depressed response of delayed type hypersensitivity in tumor bearing mice to normal level.

  • PDF

Innate Immunity Activation and Anti-Inflammation Effects of Evodia Rutaecarpine Water Extract (오수유 물 추출물의 선천 면역 활성과 염증 억제 효과)

  • Jeong, So-Mi;Lee, Jin-Moo;Lee, Chang-Hoon;Hwang, Deok-Sang;Jang, Jun-Bock
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • Objectives: This study was designed to examine immuno-modulatory effects of Evodia Rutaecarpine by activating innate immune system and inhibiting inflammation. Methods: First, Cell cytotoxicity was examined with 4T1 breast carcinoma and TG-induced macrophage. To investigate activating innate immune system of Evodiamine Rutacarpine Extract (ERE) on macrophage, we tested tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). In addition, TNF-α and nitric oxide (NO) induced by lipopolysaccharide (LPS) were measured after treating with ERE to observe innate immune modulating effect of ERE on RAW 264.7 cell. Also, mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) were examined by western blot analysis. Results: In cytotoxicity analysis, ERE significantly affected tumor cell growth above specific concentration. Also, ERE significantly affected macrophage growth above specific concetration. As compared with the control group, the production of TNF-α, IL-12 and IL-6 were increased in TG-induced macrophage. As compared with the control group, TNF-α and IL-6 were significantly up-regulated in RAW 264.7 cell. The expression of TNF-α and NO induced by LPS after treating ERE was significantly decreased compared with control group. In addition, We observed ERE inhibited the phosphorylation levels of p-extracellular signal-regulated kinase (p-ERK), p-Jun N-terminal kinase (p-JNK), and p-p38 in western blotting by treating ERE on RAW 264.7 cell. Conclusions: ERE seems to have considerable impact on the anti-cancer effect by activation of innate immune system and inflammation control.

Antitumor and Immunological Activities of ${\gamma}$-ray Irradiated Lipopolysaccharide Extracted from proteus vulgaris RH-90 (Proteus vulgaris RH-90에서 추출하여 감마선 조사시킨 Lipopolysaccharide(LPS)의 항암 및 면역활성에 미치는 영향)

  • 류병호;박우열김희숙박종옥
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.45-54
    • /
    • 1991
  • The aims of this study were investigated the antitumor effects and immunological activities of lipopolysaccharides (LPS) extracted from Proteus vulgaris RH-90 toward sarcoma-180 cells. LPS extracted from Proteus vulgris RH-90 was irradiated with gamma ray for detoxification. The tumor incidence of sarcoma-180 occurs all group which injected with gamma ray irradiated LPS and tumor of sarcoma-180 was necrotized with breeding in the injected group of l0$\mu\textrm{g}$ LPS. The inhibition ratio of tumor growth showed at the highest level of 60.88% when 5$\mu\textrm{g}$ gamma ray irradiated LPS was injected into mice. The prolongation ratio of life showed 20.72% when injected into mice with gamma ray irradiated LPS of 5$\mu\textrm{g}$. In the effect of immunological activity, the number of circurating leucocyte and peritoneal exudate cells were increased significantly in the treatment group than that control group, and dose-dependent response indicated by the increase of weights of immunorgans which revealed the improvement of immunity. The effect of macrophage on phagocytes, there were not found the differences between phagocytic and corrected phagocytic index.

  • PDF

Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death

  • Song, Hyun-Keun;Hur, In-Do;Park, Hyun-Jin;Nam, Joo-Hyung;Park, Ga-Bin;Kong, Kyoung-Hye;Hwang, Young-Mi;Kim, Yeong-Seok;Cho, Dae-Ho;Lee, Wang-Jae;Hur, Dae-Young
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.236-242
    • /
    • 2009
  • Background: Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods: Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was analysized by staining DNA with propidum iodide (PI). mRNA and protein expression related to cell cycle arrest was measured by reverse transcription PCR and western blot. Tumor growth and metastasis was measured by in vivo model. Results: Selenium was suppressed the proliferation of melanoma cells in a dose dependent manner. The growth inhibition of melanoma by selenium was associated with an arrest of cell cycle distribution at G0/G1 stage. The mRNA and protein level of CDK2/CDK4 was suppressed by treatment with selenium in a time-dependent manner. In vivo, tumor growth was not suppressed by selenium; however tumor metastasis was suppressed by selenium in mouse model. Conclusion: These results suggest that selenium might be a potent agent to inhibit proliferative activity of melanoma cells.

HOCl Oxidation-modified CT26 Cell Vaccine Inhibits Colon Tumor Growth in a Mouse Model

  • Zhou, Rui;Huang, Wen-Jun;Ma, Cong;Zhou, Yan;Yao, Yu-Qin;Wang, Yu-Xi;Gou, Lan-Tu;Yi, Chen;Yang, Jin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4037-4043
    • /
    • 2012
  • Despite progress in elucidating mechanisms associated with colorectal cancer and improvement of treatment methods, it remains a frequent cause of death worldwide. New and more effective therapies are therefore urgently needed. Recent studies have shown that immunogenicity of whole ovarian tumor cells and subsequent T cell response were potentiated by oxidation modification with hypochlorous acid (HOCl) in vitro and ex vivo. These results prompted us to investigate the protective antitumor response with an HOCl treated CT26 colorectal cancer cell vaccine in an in vivo mouse model. Administration of HOCl modified vaccine triggered robust antitumor immunity to autologous tumor cells in mice and prolonged survival period significantly. In addition, increased necrosis and apoptosis were found in tumor tissue from the oxidation group. Interestingly, ELISPOT assays showed that specific T cell responses were not elicited in response to the immunizing cellular antigen, in contrast to raising sera antibody titer and antibody binding activity shown by ELISA assay and flow cytometry. Further evaluation of the mechanisms underlying HOCl modified vaccine mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results combined with previous studies suggest that HOCl oxidation modified whole cell vaccine has wide applicability as a cancer vaccine because it can target both T cell- and B cell-specific responses. It may thus represent a promising approach for the immunotherapy of colorectal cancer.

Role of Tumor-associated Macrophage in Tumor Microenvironment (암미세환경에서 종양관련대식세포의 역할)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.992-998
    • /
    • 2018
  • Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.

Fermented antler extract enhances the viability and interleukin-12 production of spleen cells (발효녹용 추출물에 의한 비장세포의 생존율 및 interleukin-12 생산 증진)

  • Yang, Hye-Yeoul;Kim, Youngsu;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.3
    • /
    • pp.183-187
    • /
    • 2016
  • The effects of antlers have long been known in traditional Asian medicine. However, few studies have investigated the effects of antlers on immunity. In this study, we investigated whether fermented antler extract (FAE) has immunomodulatory effects on spleen cells. FAE enhanced the activity of spleen cells in a concentration dependent manner compared to antler extract. Interestingly, FAE significantly increased the production of interleukin-12, a representative cytokine of cell-mediated immunity, while it marginally increased that of tumor necrosis factor-alpha. Flow cytometry analysis demonstrated that FAE can protect spleen cells from spontaneous cell death without a significant proportional change in subsets, mainly lymphocytes. Taken together, the results of the present study showed that FAE has beneficial effects on spleen cells, a major type of immune cell, indicating that it can function as an immunomodulator without significant cytotoxicity. These data may broaden the use of FAE in basic research and clinical areas.