• 제목/요약/키워드: Tumor immune microenvironment

검색결과 83건 처리시간 0.026초

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment

  • Qin, Jun-fang;Jin, Feng-jiao;Li, Ning;Guan, Hai-tao;Lan, Lan;Ni, Hong;Wang, Yue
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.295-300
    • /
    • 2015
  • Stress and its related hormones epinephrine (E) and norepinephrine (NE) play a crucial role in tumor progression. Macrophages in the tumor microenvironment (TME) polarized to M2 is also a vital pathway for tumor deterioration. Here, we explore the underlying role of macrophages in the effect of stress and E promoting breast cancer growth. It was found that the weight and volume of tumor in tumor bearing mice were increased, and dramatically accompanied with the rising E level after chronic stress using social isolation. What is most noteworthy, the number of M2 macrophages inside tumor was up-regulated with it. The effects of E treatment appear to be directly related to the change of M2 phenotype is reproduced in vitro. Moreover, E receptor $ADR{\beta}2$ involved in E promoting M2 polarization was comprehended simultaneously. Our results imply psychological stress is influential on specific immune system, more essential for the comprehensive treatment against tumors. [BMB Reports 2015; 48(5): 295-300]

Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

  • Heo, Chang-Kyu;Bahk, Young Yil;Cho, Eun-Wie
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.677-685
    • /
    • 2012
  • In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.

TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non-T cell inflamed tumor types

  • Yang, San-Duk;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.13.1-13.4
    • /
    • 2022
  • A major issue in the use of immune checkpoint inhibitors is their lack of efficacy in many patients. Previous studies have reported that the T cell inflamed signature can help predict the response to immunotherapy. Thus, many studies have investigated mechanisms of immunotherapy resistance by defining the tumor microenvironment based on T cell inflamed and non-T cell inflamed subsets. Although methods of calculating T cell inflamed subsets have been developed, valid screening tools for distinguishing T cell inflamed from non-T cell inflamed subsets using gene expression data are still needed, since general researchers who are unfamiliar with the details of the equations can experience difficulties using extant scoring formulas to conduct analyses. Thus, we introduce TcellInflamedDetector, an R package for distinguishing T cell inflamed from non-T cell inflamed samples using cancer gene expression data via bulk RNA sequencing.

Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors

  • Kim, Nayoung;Lee, Dong-Hee;Choi, Woo Seon;Yi, Eunbi;Kim, HyoJeong;Kim, Jung Min;Jin, Hyung-Seung;Kim, Hun Sik
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.44-58
    • /
    • 2021
  • Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize anti-tumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell anti-tumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • 제54권8호
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.

Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma

  • Dae Ui Lee;Beom Seok Han;Kyung Hee Jung;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.281-290
    • /
    • 2024
  • Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

Effect of glucose level on chemical hypoxia- and hydrogen peroxide-induced chemokine expression in human glioblastoma cell lines

  • Jung, Yieun;Ahn, So-Hee;Park, Sang Hui;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.509-518
    • /
    • 2017
  • Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. The GBM-specific tumor microenvironment (TME) plays a crucial role in tumor progression, immune escape, local invasion, and metastasis of GBM. Here, we demonstrate that hypoxia, reactive oxygen species (ROS), and differential concentration of glucose influence the expression of cytokines and chemokines, such as IL-6, IL-8, and IP-10, in human glial cell lines. Treatment with cobalt chloride ($CoCl_2$) and hydrogen peroxide ($H_2O_2$) significantly increased the expression levels of IL-6, IL-8, and IP-10 in a dose-dependent manner in CRT-MG and U251-MG astroglioma cells, but not in microglia cells. However, we found strikingly different patterns of expression of cytokines and chemokines between $H_2O_2$-treated CRT-MG cells cultured in low- and high-glucose medium. These results suggest that astroglioma and microglia cells exhibit distinct patterns of cytokine and chemokine expression in response to $CoCl_2$ and $H_2O_2$ treatment, and different concentrations of glucose influence this expression under either hypoxic or oxidant-enriched conditions.

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.