Ovarian cancer patients need a surveillance program for the detection of tumor progression after completion of treatment. The methods generally consist of history taking, physical examination, tumor marker monitoring and imaging. However, the details of recurrence detection with each method are not well defined. To clarify this issue, ovarian cancer patients who achieved complete or partial responses and developed tumor progression at the follow up time between January 2004 and December 2010 in University Hospital Chiang Mai, Thailand, were reviewed. Clinical data, CA 125 level and imaging results at the tumor progression time were recorded and analyzed. There were 144 ovarian cancer patients meeting the inclusion criteria with the mean age of 51 years and 62.5% of them were in an advanced stage. Complete response was achieved in 89 patients (61.8%) after primary treatment. The median progression free survival and overall survival were 15.5 months and 37.5 months, respectively. Abnormal symptoms presented in 49.3% of the studied patients and 59.7% developed physical examination abnormalities. In addition, CA 125 was elevated in 89.6% while in 74.3% of tumor progression was identified by CT-scan. Short treatment time period and a high level of CA 125 were significant independent prognostic factors in these patients. In conclusion, careful history taking, physical examination and monitoring of CA 125 levels are important methods for tumor progression detection in a surveillance program for epithelial ovarian cancer patients.
The Journal of the Korean bone and joint tumor society
/
v.11
no.1
/
pp.32-39
/
2005
Introduction: Currently, F-18 fluorodeoxyglucose positron emission tomography scans (FDG-PET) has been investigated in soft tissue tumor especially for tumor detection and noninvasive grading. However, the validity and the efficacy of FDG-PET are still unclear in clinical evaluation. The purpose of this study is to determine the efficacy of FDG-PET in compared to conventional diagnostic imaging studies currently used in the soft tissue tumor. Methods: Between March 2001 and March 2002, 29 patients (sixteen males, thirteen females, mean age, 47 years; a range from 4 to 73) diagnosed with soft tissue tumor were evaluated by both conventional diagnostic imaging and FDG-PET. Valid reference test of the local lesion was the histopathologic diagnosis, which was measured in all patients. The suspecting metastasis in the imaging studies was validated by pathology or follow up imaging for at least 6 months. Each imaging diagnosis was made independently. The accuracy of each diagnostic method was evaluated. The incremental cost accuracy ratio was determined in each diagnostic method. Results: For detection of local lesion, sensitivity, specificity, and accuracy for MRI and FDGPET scans were 91%, 57%, 83% and 95%, 43%, 83% respectively. For detection of distant lesion, sensitivity, specificity, accuracy for conventional diagnostic methods and FDG-PET scans were 77%, 89%, 87% and 92%, 94%, 93% respectively. The incremental cost accuracy ratio (ICAR) of FDG-PET for detection of distant lesion was 145,000won/%. According to ICAR for each tumor grade, PET strategy is most cost-effective at high grade tumors. Conclusions: For detection of local lesion such as recurrence or remnant tumor, FDG-PET scan was not more accurate than MRI. However, It was more accurate for detection of metastatic lesion than conventional methods. For detection of high grade tumor, PET was most costeffective than for detection of lower grade tumor.
Journal of the Institute of Convergence Signal Processing
/
v.12
no.4
/
pp.267-273
/
2011
In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.
Transactions on Electrical and Electronic Materials
/
v.15
no.4
/
pp.230-234
/
2014
Automatic detection of disease helps medical institutions that are introducing digital images to read images rapidly and accurately, and is thus applicable to lesion diagnosis and treatment. The aim of this study was to apply a symmetry contribution algorithm to unsharp mask filter-applied MR images and propose an analysis technique to automatically recognize brain tumor and edema. We extracted the skull region and drawed outline of the skull in database of images obtained at P University Hospital and detected an axis of symmetry with cerebral characteristics. A symmetry contribution algorithm was then applied to the images around the axis of symmetry to observe intensity changes in pixels and detect disease areas. When we did not use the unsharp mask filter, a brain tumor was detected in 60 of a total of 95 MR images. The disease detection rate for the brain was 63.16%. However, when we used the unsharp mask filter, the tumor was detected in 87 of a total of 95 MR images, with a disease detection rate of 91.58%. When the unsharp mask filter was used in the pre-process stage, the disease detection rate for the brain was higher than when it was not used. We confirmed that unsharp mask filter can be used to rapidly and accurately to read many MR images stored in a database.
Objective: To explore the predictive value of tumor markers, including cancer antigen 72-4 (CA72-4), cancer antigen 15-3 (CA15-3) and cancer antigen 125 (CA125), in single or combined detection, for the diagnosis of ovarian cancer. Methods: 120 patients diagnosed with ovarian cancer from August 2011 to March 2013 and 80 patients diagnosed with benign ovarian tumors were enrolled in this test, along with 50 health examination women randomly selected from the database as controls. Serum levels of CA72-4, CA15-3 and CA125 in this study were determined by electrochemiluminescence (ECL). Results: Serum levels of CA72-4, CA15-3 and CA125 in ovarian cancer were higher than those in healthy group and benign group (P<0.01).The sensitivity of combined detection of those three tumor markers for diagnosis of ovarian cancer was obviously higher than with single detection with each marker (P<0.01). Conclusions: CA72-4, CA15-3 and CA125 could be a good combination in the diagnosis of ovarian cancer. Patients whose tumor markers continue to increase should be highly suspected of malignancy.
This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions.
In this paper, we proposed automatic extraction of brain tumor using morphological operation and statistical tumors size in MR images. Neurosurgery have used gamma-knife therapy by MR images. However, the gamma-knife plan systems needs the brain tumor regions, because gamma-ray should intensively radiate to the brain tumor except for normal cells. Therefore, gamma-knife plan systems spend too much time on designating the tumor regions. In order to reduce the time of designation of tumors, we progress the automatical extraction of tumors using proposed method. The proposed method consist of two steps. First, the information of skull at MRI slices remove using statistical tumors size. Second, the ROI is extracted by tumor feature and average of tumors size. The detection of tumor is progressed using proposed and threshold method. Moreover, in order to compare the effeminacy of proposed method, we compared snap-shot and results of proposed method.
PET detects only less than 50% of early gastric cancer and 62-98% of advanced gastric cancer. Therefore, mass screening programs are recommended for all adults over the age of 40 for early detection and early treatment of gastric cancer through endoscopy or various radiological tests. The most important step after being diagnosed with gastric cancer is accurate staging, which mainly evaluates tumor resectability to avoid unnecessary surgery. Important factors that affect tumor resectability are whether the tumor can be separated from adjacent organs or important blood vessels, the extent of lymph node metastasis, presence of peritoneal metastasis, or distant organ metastasis. To evaluate the extent of local tumor invasion, anatomical imaging that has superior spatial resolution is essential. There are a few studies on prognostic significance of FDG uptake with inconsistent results between them. In spite of lower sensitivities for lymph node staging, the specificities of CT and PET are very high, and the specificity for PET tends to be higher than that for CT. Limited data published so far show that PET seems less useful in the detection of lung and bone metastasis. In the evaluation of pleural or peritoneal metastasis, PET seems very specific but insensitive as well. When FDG uptake of the primary tumor is low, the distant metastasis is also known to show low FDG uptake reducing its detection. There are only a few data available in the evaluation of recurrence detection and treatment response using FDG PET.
International Journal of Control, Automation, and Systems
/
v.2
no.1
/
pp.100-106
/
2004
In this paper, we present a novel, rapid approach for the detection of brain tumors and deformity boundaries in medical images using a genetic algorithm with wavelet based preprocessing. The contour detection problem is formulated as an optimization process that seeks the contour of the object in a manner of minimizing an energy function based on an active contour model. The brain tumor segmentation contour, however, cannot be detected in case that a higher gradient intensity exists other than the interested brain tumor and deformities. Our method for discerning brain tumors and deformities from unwanted adjacent tissues is proposed. The proposed method can be used in medical image analysis because the exact contour of the brain tumor and deformities is followed by precise diagnosis of the deformities.
Renal cell carcinoma is the most common histological type of renal malignancy, predominant in men and the primary treatment modality of this tumor is surgery. The role of diagnostic imaging in the management of this tumor is the evaluation of extent of disease as well as the detection and characterization of renal mass. US has long been a routine screening tool for kidney but tomographic imaging modalities such as CT and MRI begin to be also commonly used these days. On the other hand, the sensitivity of $^{18}F-FDG-PET$ in detection of renal mass is relatively low because of inherent limitation caused by FDG excretion pathway despite avid uptake of FDG to tumor cell per se. Many studies revealed FDG PET scan could play an important role in detection of metastatic lesions although the sensitivity for the detection of primary lesion is not so high. Furthermore, development of PET/CT scanner will make it possible to expand the indication of FDG PET scan in this malignancy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.