• Title/Summary/Keyword: Tumor associated membrane proteins

Search Result 21, Processing Time 0.028 seconds

Water Extract of Allium sativum L. Induces Apoptosis in Human Leukemia U937 Cells through Reactive Oxygen Species Generation (마늘 열수 추출물의 활성산소종 생성을 통한 인체백혈병세포의 apoptosis 유발)

  • Choi, Woo-Young;Chung, Kyung-Tae;Yoon, Tae-Kyung;Choi, Byung-Tae;Lee, Yong-Tae;Lee, Won-Ho;Ryu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1709-1716
    • /
    • 2007
  • The health benefits of garlic (Allium sativum L.) are derived from a wide variety of components and from the different ways it is administered. The known health benefits of garlic include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, protection against microbial, viral and fungal infections, as well as anticancer effects. In the present study, it was examined the effects of water extract of A. sativum (WEAS) on the growth of cultured human tumor cells in order to investigate its anti-proliferative mechanism. Treatment of WEAS to tumor cells resulted in the growth inhibition, especially in leukemia cells, which was associated with induction of G2/M arrest of the cell cycle and apoptosis. In order to further explore the critical events leading to apoptosis in WEAS-treated U937 human leukemia cells, the following effects of WEAS on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 and IAP family proteins. The cytotoxic effect of WEAS was mediated by its induction of apoptosis as characterized by the occurrence of DNA ladders, apoptotic bodies and chromosome condensation in U937 cells. The WEAS-induced apoptosis in U937 cells was correlated with the generation of intracellular ROS, collapse of MMP, activation of caspase-3 and down-regulation of anti-apoptotic proteins. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against WEAS-elicited ROS generation, caspase-3 activation, G2/M arrest and apoptosis. In conclusion, the present study reveals that the cellular ROS generation plays a pivotal role in the initiation of WEAS-triggered apoptotic death in U937 cells.

Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells (Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과)

  • Ha, Hun-Joo;Park, Young-Mee;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.323-331
    • /
    • 1995
  • Monocyte/macrophage infiltration is the well known initial features associated with the development of glomerular disease including non-immune mediated nephropathy. Tumor necrosis factor ${\alpha}(TNF{\alpha})$, a cytokine produced primarily by monocyte/macrophage, exhibits similar effects as observed at the initial stages and during the progression of glomerular injury. Because the mesangial cells are target cells for glomerular injury, the present study examined the effect of $TNF{\alpha}$ on glomerular mesangial cell membrane lipid peroxidation as an index of cytotoxicity attributing to $TNF{\alpha}$. Primary culture of rat mesangial cell was established by incubation of glomeruli isolated from male Sprague-Dawley rat kidneys utilizing a standard sieving method. The levels of lipid peroxides in the mesangial cells were quantitated by malondialdehyde- thiobarbituric acid adduct formation. During an 8 hour incubation at $37^{\circ}C$, $TNF{\alpha}$ at 10 to 10,000 units/ml increased the levels of lipid peroxides dose dependently. Western blot analysis demonstrated that a short thermal stress induced heat shock response and the synthesis of heat shock protein 70(hsp70) in this mesangial cells. Further, this induction of hsp 70 prevented increase of lipid peroxides in the mesangial cells exposed to $TNF{\alpha}$. These data suggest that $TNF{\alpha}-induced$ lipid peroxidation in the mesangial cells may have pathophysiological relevance to glomerular injury and prior induction of heat shock response may play a role in the cellular resistance against $TNF{\alpha}-induced$ glomerular injury.

  • PDF

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Apoptosis and Autophagy Induction of A549 Human Lung Cancer Cells by Methylene Chloride Extracts of Morus alba L. (A549 인체폐암세포에서 상백피 메틸렌클로라이드 추출물에 의한 Apoptosis 및 Autophagy 유발)

  • Park, Shin-Hyoung;Chi, Gyoo-Yong;Choi, Yung-Hyun;Eom, Hyun-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.942-949
    • /
    • 2010
  • Morus alba L., a kind of Oriental medicinal herbs, has been traditionally used to treat pulmonary asthma and congestion. According to recent studies, extracts of M. alba L. have showed anti-inflammatory, anti-oxidant, anti-tumor and hypoglycemic effects. However, the molecular mechanisms on how it acts as a death-inducer in cancer cells have not been fully understood. In this study, we investigated the cell death effects of methylene chloride extracts of M. alba L. (MEMA) in A549 human lung carcinoma cells. It was shown that MEMA induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. MEMA treatment induced the expression of death receptor-related proteins such as death receptor (DR) 4, DR5, Fas and FasL, which further triggered the activation of caspase-8 and the cleavage of Bid in a concentration-dependent manner. However, MEMA reduced anti-apoptotic Bcl-2 and Bcl-xL expression which contributed to the loss of mitochondrial membrane potential (MMP), and the activations of caspase-9 and caspase-3. Meanwhile, the morphological study indicated a characteristic finding of autophagy, such as the formation of autophagosomes in MEMA-treated cells. Furthermore, markers of autophagy, namely, the increased MDC-positive cells, conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II and increased beclin-1 accumulation, were observed. Taken together, these findings demonstrated that MEMA triggered both autophagy and apoptosis in A549 cancer cells. They might suggest that M. alba L. could be a prospective clinical application to treat human lung cancers.

The potential inhibitory effect of ginsenoside Rh2 on mitophagy in UV-irradiated human dermal fibroblasts

  • Lee, Hyunji;Kong, Gyeyeong;Park, Jisoo;Park, Jongsun
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.646-656
    • /
    • 2022
  • Background: In addition to its use as a health food, ginseng is used in cosmetics and shampoo because of its extensive health benefits. The ginsenoside, Rh2, is a component of ginseng that inhibits tumor cell proliferation and differentiation, promotes insulin secretion, improves insulin sensitivity, and shows antioxidant effects. Methods: The effects of Rh2 on cell survival, extracellular matrix (ECM) protein expression, and cell differentiation were examined. The antioxidant effects of Rh2 in UV-irradiated normal human dermal fibroblast (NHDF) cells were also examined. The effects of Rh2 on mitochondrial function, morphology, and mitophagy were investigated in UV-irradiated NHDF cells. Results: Rh2 treatment promoted the proliferation of NHDF cells. Additionally, Rh2 increased the expression levels of ECM proteins and growth-associated immediate-early genes in ultraviolet (UV)-irradiated NHDF cells. Rh2 also affected antioxidant protein expression and increased total antioxidant capacity. Furthermore, treatment with Rh2 ameliorated the changes in mitochondrial morphology, induced the recovery of mitochondrial function, and inhibited the initiation of mitophagy in UV-irradiated NHDF cells. Conclusion: Rh2 inhibits mitophagy and reinstates mitochondrial ATP production and membrane potential in NHDF cells damaged by UV exposure, leading to the recovery of ECM, cell proliferation, and antioxidant capacity.

The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells (A549 폐암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 apoptosis 유도 효과)

  • Kim, Bo-Min;Kim, Guen-Tae;Kim, Eun-Ji;Lim, Eun-Gyeong;Kim, Sang-Yong;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.887-894
    • /
    • 2016
  • The extract from Artemisia annuain L.(AAE) is known as a medicinal herb that is effective against cancer. Apoptosis is the process of programmed cell death, and mitochondria are known to play a central role in cell death control. In this study, we evaluated the p53-independent apoptosis of extract of AAE through downregulation of Bcl-2 and the mitochondrial pathway in A549 (lung cancer cells). AAE may exert cancer cell apoptosis through regulating p-Akt, Cox-2, p53 and mitochondria-mediated apoptotic proteins. p-Akt/cox-2 is known to play an important role in cell proliferation and cell survival. The Bcl-2 pro-apoptotic proteins (such as Bax, Bak and Bim) mediate the permeabilization of the mitochondrial outer membrane. Treatment of AAE reduces p-Akt, p-Mdm2, cox-2 and anti-apoptotic proteins (such as Bcl-2), while tumor suppressor p53 and pro-apoptotic proteins. Activation of Bax/Bak releases cytochrome c from mitochondria to the cytosol to activate a caspase. Caspase-3 is the major effector caspase associated with apoptotic pathways. Caspase-3 generally exists in cytoplasm in the form of a pro-enzyme. In the initiation stage of apoptosis, caspase-3 is activated by proteolytic cleavage and activated caspase-3 cleaves poly (ADP-ribose) polymerase (PARP). We treated Pifithrin-α (p53 inhibitor) and Celecoxib (Cox-2 inhibitor) to learn the relationship between the signal transduction of proteins associated with apoptosis. These results suggest that AAE induces apoptosis through a p53-independent pathway in A549.

Matrix Metalloproteinase-2 (-1306 C>T) Promoter Polymorphism and Risk of Colorectal Cancer in the Saudi Population

  • Saeed, Hesham Mahmoud;Alanazi, Mohammad Saud;Parine, Narasimha Reddy;Shaik, Jilani;Semlali, Abdelhabib;Alharbi, Othman;Azzam, Nahla;Aljebreen, Abdulrahman;Almadi, Majid;Shalaby, Manal Aly
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6025-6030
    • /
    • 2013
  • Background: Matrix metalloproteinase-2 (MMP-2) is an enzyme with proteolytic activity against matrix proteins, particularly basement membrane constituents. A single nucleotide polymorphism (SNP) at -1306, which disrupts a Sp1-type promoter site (CCACC box), results in strikingly lower promoter activity with the T allele. In the present study, we investigated whether this MMP-2 genetic polymorphism might be associated with susceptibility to colorectal cancer (CRC) in the Saudi population. We also analyzed MMP-2 gene expression level sin CRC patients and 4 different cancer cell lines. Materials and Methods: TaqMan allele discrimination assays and DNA sequencing techniques were used to investigate the $C^{-1306}T$ SNP in the MMP-2 gene of Saudi colorectal cancer patients and controls. The MMP-2 gene expression level was also determined in 12 colon cancer tissue samples collected from unrelated patients and histologically normal tissues distant from tumor margins. Results and Conclusions: The MMP-2 $C^{-1306}T$ SNP in the promoter region was associated with CRC in our Saudi population and the MMP-2 gene expression level was found to be 10 times higher in CRC patients. The MMP-2 $C^{-1306}T$ SNP is significantly associated with CRC in the Saudi population and this finding suggested that MMP-2 variants might help predict CRC progression risk among Saudis. We propose that analysis of this gene polymorphism could assist in identification of patient subgroups at risk of a poor disease outcome.

Activity of Matrix Metalloproteinase-2 and its Significance after Resection of Stage I Non-small Cell Lung Cancer (제1기 비소세포폐암 환자의 수술적 절제 후 Matrix Metalloprotainase-2 활성도에 따른 재발 및 예후)

  • Kim Sang Hui;Hong Young-Sook;Lee Jinseon;Son Dae-Soon;Lim Yu-Sung;Song In-Seung;Lee Hye-Sook;Kim Do Hun;Kim Jingook;Choi Yong Soo
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.38-43
    • /
    • 2005
  • Matrix metalloproteinase-2 (MMP-2) is a class of proteolytic enzymes that digest collagen type IV and other components of the basement membrane. It plays a key role in the local invasion and the formation of distant metastases by various malignant tumors. The aim of this study was to evaluate the activity of MMP-2 and its significance as a prognostic marker in resected stage I non-small cell lung cancer (NSCLC). Material and Method: In this study we obtained fresh-frozen samples of tumor and non-tumor tissues from 34 patients with stage I NSCLC who underwent resection without preoperative radiotherapy or chemotherapy. After the extraction of total protein from tissue samples, MMP-2 activities were assessed by gelatin-substrate-zymography. The activities were divided into the higher or lower groups. Result: The MMP-2 activities were higher in tumor tissues than in non-tumor tissues. The MMP-2 activity of non-tumor tissues in recurrent group was higher than in non-recurrent group (p<0.01). Also the patients with higher MMP-2 activity of non-tumor tissues showed poor 5 year survival (p<0.01). Conclusion: This result indicates that the higher level of MMP-2 activity in the non-tumor tissue is associated with the recurrence and survival after the resection of stage I NSCLC. Therefore, MMP-2 activity in the non-tumor tissue could be used as a potential prognostic marker for the resected stage I-NSCLC.

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF