• Title/Summary/Keyword: Tubular system

Search Result 284, Processing Time 0.034 seconds

Characteristics of Hydrogen and Carbon Production in Tubluar Reactor by Thermal Decomposition of Methane (Methane의 고온열분해에 의한 Tubluar reactor에서의 수소 및 탄소 생성 특성)

  • Lee, Byung Gwon;Lim, Jong Sung;Choi, Dae Ki;Park, Jeong Kun;Lee, Young Whan;Baek, Young Soon
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • This work was focused on the thermal decomposition of methane into hydrogen and carbon black without emitting carbon dioxide. Extensive experimental investigation on the thermal decomposition of methane has been carried out using a continuous flow reaction system with tubular reactor. The experiments were conducted at the atmospheric pressure condition in the wide range of temperature ($950-1150^{\circ}C$) and flow rate (250 - 1500 ml/min) in order to study their dependency on hydrogen yield. During the experiments the carbon black was successfully recovered as an useful product. Undesirable pyrocarbon was also formed as solid film, which was deposited on the inside surface of tubular reactor. The film of pyrocarbon in the reactor wall became thicker and thicker, finally blocking the reactor. The design of an efficient reactor which can effectively suppress the formation of pyrocarbon was thought to be one of the most important subjects in the thermal cracking of methane.

Nonlinear Renal Excretion of Theophyline and its Metabolites, 1-Methyluric Acid and 1,3-Dimethyluric Acid, in Rats

  • Kuhkang, Hyo-Jeong;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.124-130
    • /
    • 1994
  • Plasma phamacokinetics and renal excretion of theophylline (TP) and its metabolities were ivnestigated in rats. Plasma concentrations of TP declined in a monoexponential manner, while those of 1-methyluric (MU) and 1,3-dimethyluric(DMU) declined in a biexponential manner upon respective iv bolus injection of each compound at 6mg/kg dose. The total body clearances $(CL_r)$ of the metabolites were 4-6 fold larger than that of TP, while the distribution volumes of them at steady-state $(Vd_{ss})$ were 40-50% smaller than that of TP. The metabolites showed their plasma peaks in 30 min after iv injection of TP indicating than that to MU. Renal excretion of TP and its metabolites was studied in urine flow rate (UFR)-controlled rats. The renal clearance $(CL_r)$ of TP was inversely related to pasma TP concentrations, and much smaller than the glomerular filtration rate (GFR) suggesting tubular secretion and profound reabsorption in the renal tubule. The $(CL_r)$ of each metabolite also showed that inverse relationship, but far exceeded GFR suggesting that tubular secretion than GFR by ip injection of probenecid (142.7 mg/kg). It supports that the metabolies are secreted in the renal tubule, and suggests that they share a common transport system in their sectrtion processes with probenecid. On the other hand, the $(CL_r)$ of TP was not affected significantly by the probenecid treatment. Considering the inverse relationship of TP between the $(CL_r)$ and its ploasma concentrations,no effect of probenecid on $(CL_r)$ of TP is most likely due to negligible contribution of the secretion to the overall $(CL_r)$ of TP.

  • PDF

Permeation Behavior of Semiconductor Rinsing Wastewater Containing Si Particles in Ultrafiltration System -II. Permeation Characteristics of Tubular Membrane (Si 입자를 함유한 반도체 세정폐수의 한외여과 특성 [II] -Polyolefin 관형막에 의한 투과분리-)

  • 남석태;여호택;전재홍;이석기;최호상
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Permeation behavior of the semiconductor rinsing wastewater contammg Si particles was examined by ultrafiltration using the polyolefin tubular membrane. Flux decline with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by Si particles. Cake filtration from the cross flow application is compared to the combination of pore blocking and cake filtration from the dead-end application. The cake resistance is 3.16 x $10^{12}$ -4.34 X $\times$$10^{12}$ $m^{-1}$ for the cross flow and 6.6 x $\times$$10^{12}$ -12.19 X $\times$$10^{12}$ $\times$$m^{-1}$for the dead-end flow, respectively. At the initial stage of operation, permeation flux of cross flow type was 1.7 time higher than that of the dead end flow type. Permeation flux of cross flow was about 42 e 1m2 hr and the rejection rate of Si particles was about 96 %. The average particle size of Si particle in the permeate was 20 nm.

  • PDF

A Study on the Properties of Knit Jacquard Structure (니트 자카드 조직의 특성에 관한 연구)

  • Ki, Hee-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.4
    • /
    • pp.77-90
    • /
    • 2015
  • This study is to designed to provide foundation for knit design which can apply the thickness and flexibility of jacquard knit by analyzing and comparing mechanical properties of 7 types of jacquard (normal jacquard, bird's eye jacquard, floating jacquard, tubular jacquard, ladder's back jacquard, blister jacquard, transfer jacquard) widely used in knit design to achieve the results. The sample was projected by using 7 gauge and SES-122S type computer knitting machine house tooth pattern with two colors were applied to 7 types of jacquard using Acrylic/Wool(30%/70%) $2/50.5^{\prime}s{\times}4ply\;yarn$ by Shimaseiki MFG., Ltd computer knitting machine. The mechanical properties of 7 types of jacquard samples were measured using KES-FB (Kawabata Evaluation System for Fabric, Kata Tech Co. Ltd). HV(Hand Value) and THV (Total Hand Value) were calculated by using the formula of KN-402-KT and KN-301-WINTER respectively. The measurements were evaluated by 0-to-5 rating scale. As result, the floating jacquard was found to have excellent drape, making it suitable for express feminine silhouette with its most flexible and smooth touch. On the other hand, bird's eye jacquard is adequate for a suit jacket and coat regarding its excellent volume and flexibility. Blister jacquard and tubular jacquard are thick, heavy and stiff knit and both are suitable for simple box-style design. Ladder's back jacquard, however, is more appropriate for expressing the design of feminine charm and voluminous design. Based on the result of this study, it is supposed to provide basic information for development of knit industry regarding jacquard knit by designing the creative knit wear with high production efficiency.

  • PDF

Piezo-activated guided wave propagation and interaction with damage in tubular structures

  • Lu, Ye;Ye, Lin;Wang, Dong;Zhou, Limin;Cheng, Li
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.835-849
    • /
    • 2010
  • This study investigated propagation characteristics of piezo-activated guided waves in an aluminium rectangular-section tube for the purpose of damage identification. Changes in propagating velocity and amplitude of the first wave packet in acquired signals were observed in the frequency range from 50 to 250 kHz. The difference in guided wave propagation between rectangular- and circular-section tubes was examined using finite element simulation, demonstrating a great challenge in interpretation of guided wave signals in rectangular-section tubes. An active sensor network, consisting of nine PZT elements bonded on different surfaces of the tube, was configured to collect the wave signals scattered from through-thickness holes of different diameters. It was found that guided waves were capable of propagating across the sharp tube curvatures while retaining sensitivity to damage, even that not located on the surfaces where actuators/sensors were attached. Signal correlation between the intact and damaged structures was evaluated with the assistance of a concept of digital damage fingerprints (DDFs). The probability of the presence of damage on the unfolded tube surface was thus obtained, by which means the position of damage was identified with good accuracy.

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (III). Continuous-Automated Determination of Nitrite Ion Using a New Tubular PVC Membrane Type of Selective Electrode Nitrate (溶解氣體 分析用 氣體感應膜 이온選擇性 電極 (第 3 報). 새로운 管形 PVC膜 질산이온 選擇性 電極을 이용한 아질산이온의連續·自動化 定量)

  • Lee Heung Lark;Yun Jong-Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • A new tubular poly(vinyl chloride) membrane type of nitrate selective electrode was prepared and its characteristics were evaluated. The response slope, detection limit, and response time (t$_{99}$) under the optimum membrane composition (5${\%}$ aliquat-NO$_3$ solution + 32${\%}$ poly(vinyl chloride) + 63${\%}$ dibutyl sebecate) of the electrode were 58.5 ${\pm}$ 0.1 mV/decade, 2.0 ${\times}$ 10$^{-5}$ M, and 25 seconds, respectively. The nitrite ion was determined by the continuous-automated method using the new electrode. 10$^{-2}$ M phosphate buffer solution (pH 7.6) was used as a recipient solution. And also hydrogen peroxide (0.3${\%}$) was added to the recipient as an oxidant. The linear response range and response range and response slope for the standard nitrite solution under the optimum condition of this electrode system were 8.0 ${\times}$ 10$^{-5}$ M ∼ 5.0 ${\times}$ 10$^{-2}$ M and 56.8 ${\pm}$ 0.2 mV/decade, respectively.

  • PDF

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.

Drying of Agricultural Products by the Flat-plate Solar Collector with Rock-piled Heat Storage Medium (Rock-pile식(式) 집열기(集熱器)를 이용(利用)한 농산물건조(農産物乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 1983
  • The performance of the flat-plate solar collector with rock-pile thermal storage medium and the drying characteristics of rough rice and red pepper by use of natural air and of supplementary heated air by the solar drier were studied. The thermal efficiency of the flat-plate solar collector was average 25.4 percent and the overall heattransfer coefficient of the collector was approximately $38.13kJ/hr.m^2^{\circ}C$. The flat-plate collector was able to supply the supplementary heated air which was about $7^{\circ}C$ higher than the ambient air temperature during the daytime and about $3^{\circ}C$ higher than during the night. For rough rice drying of grain moisture content front 24.5 to 14.5%, it took 18 days in the natural air system, 12 days in the tubular solar collector and 10 days in the flat-plate solar collector. For red pepper drying from it's moisture from 81.0 to 15.0%, 68 hrs required under conventional sun drying system, but 38 hrs in tubular solar collector and 36 hrs in the flateplate solar collector. The changes of capsanthin and capsaicine content were investigated at various drying system, and little difference was found among the drying system.

  • PDF

Process Design for the Tubular Hydroforming at Elevated Temperatures (온간 하이드로포밍 공정을 위한 시스템 설계)

  • Kim, B.J.;Park, K.S.;Sohn, S.M.;Lee, M.Y.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

Use of Solar Cell and Nanofiltration Membrane for System of Enzymatic $H_2$ Production Through Light-Sensitized Photoanode (광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • Solar cell and nanofiltration membrane were utilized in a system of enzymatic hydrogen production through light-sensitized photoanode, which resembles photoelectrochemical(PEC) configuration. Solar cell uses no additional light energy to increase energy for electrons to reduce protons and for holes to oxidize water to oxygen, and nanofiltration membrane replaces a salt bridge successfully with increased ion transport capability. With this system configuration, optimized amount of enzyme(10.98 unit), and an anodized tubular $TiO_2$ electrode($5^{\circ}C$/1 hr in 0.5 wt% HF-$650^{\circ}C$/5 hr) hydrogen evolved at a rate of ca. $43\;{\mu}mol/(cm^2{\times}hr)$ in a cathodic compartment and oxygen generated at a rate of ca. $20\;{\mu}mol/(cm^2{\times}hr)$ in an anodic compartment. The stoichiometric evolution of gases indicated that water was splitted in the system.