• 제목/요약/키워드: Tubular system

검색결과 282건 처리시간 0.031초

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • 제14권4호
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

Clinical Applications of the Tubular Retractor on Spinal Disorders

  • Kim, Young-Baeg;Hyun, Seung-Jae
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권4호
    • /
    • pp.245-250
    • /
    • 2007
  • Tubular retractor system as a minimally invasive surgery (MIS) technique has many advantages over other conventional MIS techniques. It offers direct visualization of the operative field, anatomical familiarity to spine surgeons, and minimizing tissue trauma. With technical advancement, many spinal pathologies are being treated using this system. Namely, herniated discs, lumbar and cervical stenosis, synovial cysts, lumbar instability, trauma, and even some intraspinal tumors have all been treated through tubular retractor system. Flexible arm and easy change of the tube direction are particularly useful in contralateral spinal decompression from an ipsilateral approach. Careful attention to surgical technique through narrow space will ensure that complications are minimized and will provide improved outcomes. However, understanding detailed anatomies and keeping precise surgical orientation are essential for this technique. Authors present the technical feasibility and initial results of use a tubular retractor system as a minimally invasive technique for variaties of spinal disorders with a review of literature.

정수장 배출수 처리를 위한 Crossflow 관형막 여과 공정의 운전 적용에 관한 연구 (A Study about Applicability of Treatment for Water Treatment Residual Sludge Using Crossflow Tubular Membrane System)

  • 김영훈;김관엽;김지훈;이용수;이의종;엄정열;김형수;황선진
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.499-505
    • /
    • 2009
  • Many other countries have investigated the residual sludge treatment process to save the existing water resource and produce the high suspended solid concentration sludge. There are various methods for concentrating residual sludge, but the membrane system has received the most interest for its efficiency. The objective of this study was to evaluate the application of membrane filtration system for the residual sludge treatment. The experiment equipment was composed of Lab scale Crossflow tubular membrane filtration system. Generally, crossflow operation mode demands high electric cost mainly for the pump energy. So to cut off electric cost, very low Crossflow velocity was used in this experiment. Results confirmed that suspended solid concentration of residual sludge could be concentrated to 57,000mg/L in low Crossflow velocity tubular membrane system,. This concentration can be directly injected into the dehydrator. Based on the results, we know that the Crossflow tubular membrane system should be replaced conventional residual sludge treatment system.

현장시험에 의한 소수력발전용 튜블러수차시스템 성능계측 (Performance Measurement of a Tubular Type Turbine System for Small Hydropower by Field Test)

  • 황영호;이영호;최영도
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.5-10
    • /
    • 2011
  • Recently, small hydropower attracts attention because of its renewable, clean and abundant energy resources to develop. Therefore, a tubular type hydro turbine is proposed for small hydropower in this study because the turbine has relatively simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the performance characteristics of the turbine by field test. Field test iss conducted using one tubular turbine system as well as serial arrangement system by two tubular turbines taking into consideration of actual operation conditions. The results show that efficiency of test turbine changes considerably by the runner vane angle. Best efficiency of one turbine arrangement is higher than that of two turbine serial arrangement.

원통형 고체산화물 연료전지와 마이크로 가스터빈 하이브리드 시스템의 성능해석을 위한 모델링 (Modeling for the Performance Analysis of a Tubular SOFC/MGT Hybrid Power System)

  • 송태원;손정락;김재환;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2070-2075
    • /
    • 2004
  • Performance of a solid oxide fuel cell (SOFC) can be enhanced by converting thermal energy of its high temperature exhaust gas to mechanical power using a micro gas turbine (MGT). A MGT plays also an important role to pressurize and warm up inlet gas streams of the SOFC. In this study, the influence of performance characteristics of the tubular SOFC on the hybrid power system is discussed. For this purpose, detailed heat and mass transfer with reforming and electrochemical reactions in the SOFC are mathematically modeled, and their results are reflected to the performance analysis. The analysis target is 220kWe SOFC/MGT hybrid system based on the tubular SOFC developed by Siemens-Westinghouse. Special attention is paid to the ohmic losses in the tubular SOFC counting not only current flow in radial direction, but also current flow in circumferential direction through the anode and cathode.

  • PDF

내부 환보강 T형 관이음부의 정적강도 (Static Strength of Internally Ring-Stiffened Tubular T-Joints)

  • 조현만;류연선
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

역세 배출수 처리를 위한 관형막의 전량여과 운전 적용에 대한 연구 (A Study about Applicability of Treatment for Backwash Water Using Tubular Membrane System with Dead-End Operation Mode)

  • 엄정열;김관엽;김영훈;송준섭;김형수;한명애;양형석
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.437-444
    • /
    • 2008
  • Many other countries have investigated the new backwash water treatment process to save the existing water resource. There are various methods for reusing backwash water, but the membrane system has received the most interest for its efficiency. The objective of this study was to certify the application of membrane filtration system for the backwash water treatment. The experiment equipment was composed of Lab scale tubular membrane filtration system. Generally, cross-flow operation mode is used in the tubular membrane system but cross-flow operation mode demands high electric cost mainly for the pump energy. So to cut off electric cost, dead-end operation mode was used in this experiment. Filtration and bleed operation cycle was used in this membrane system. Backwash water was concentrated during the filtration process and when backwash water reached our target suspended solid concentration, it was discharged from this system. For efficient operation of filtration and bleed, mathematical matrix was drawn up and with this matrix we could simulate various sets of filtration and bleed time.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.