• Title/Summary/Keyword: Tubular structures

Search Result 374, Processing Time 0.024 seconds

Emendation of Rhodomonas marina (Cryptophyceae): insights from morphology, molecular phylogeny and water-soluble pigment in an Arctic isolate

  • Niels Daugbjerg;Cecilie B. Devantier
    • ALGAE
    • /
    • 제39권2호
    • /
    • pp.75-96
    • /
    • 2024
  • Rhodomonas (Cryptophyceae) and species assigned to this genus have undergone numerous taxonomic revisions. This also applies to R. marina studied here as it was originally assigned as a species of Cryptomonas and later considered a variation of R. baltica, the type species. Despite being described more than 130 years ago, R. marina still lacks a comprehensive characterization. Light and electron microscopy were employed to delineate a strain from western Greenland. The living cells were 18 ㎛ long and 9 ㎛ wide, elliptical in shape with a pointed to rounded posterior and truncated anterior in lateral view. Two sub-equal flagella emerged from a vestibulum, where also a furrow extended. In transmission electron microscopy, the furrow was associated with a tubular gullet and the pyrenoid embedded in a deeply lobed chloroplast. The chloroplast contained DNA in perforations and was surrounded by starch grains. A tubular nucleomorph was enclosed within the pyrenoid matrix. In scanning electron microscopy, the inner periplast consisted of rectangular plates with rounded edges and posteriorly these were replaced by a sheet-like structure. The water-soluble pigment was Crypto-Phycoerythrin type I (Cr-PE 545). A phylogenetic inference based on SSU rDNA confirmed the identity of strain S18 as a species of Rhodomonas as it clustered with congeners but also Rhinomonas, Storeatula, and Pyrenomonas. These genera formed a monophyletic clade separated from a diverse assemblage of other cryptophyte genera. To further explore the phylogeny of R. marina a concatenated phylogenetic analysis based on the SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA region was performed but included only closely related species. The secondary structure of nuclear internal transcribed spacer 2 was predicted and compared to similar structures in related species. Using morphological and molecular signatures as diagnostic features the description of R. marina was emended.

CFTA거더의 정적 거동연구 (Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder)

  • 김종인;김두기;이장형;김정호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.225-231
    • /
    • 2009
  • 본 연구는 기존의 CFT구조, 아치구조, 프리스트레스구조를 조합을 통해 복합구조를 이루는 CFTA거더를 소개하고, 25m의 CFTA거더의 실험결과와 유한요소해석 프로그램인 Strand7을 이용하여 해석결과를 비교 분석하였다. 실험체의 정적재하실험으로 거더 중심부에서 양쪽으로 1m 이격한 거리에 58kN, 88kN, 148kN, 207kN, 298kN의 하중을 재하 하고, 발생하는 변위와 변형률을 측정하였다. 또한, 실험결과를 바탕으로 구조해석 프로그램인 Strand7로 구조안정성을 검토하고, 긴장재의 긴장력과 콘크리트의 탄성계수를 각각 20%증감하여 해석을 수행 하여 변형률과 변위값을 계산하였다. 초기 변위와 변형률은 긴장재의 긴장력의 증감에 따라 영향이 나타났으며, 추가적인 정적 하중이 재하 되었을 경우에는 콘크리트의 탄성계수만이 변위와 변형률에 영향을 미치는 것으로 확인 되었다.

Variable Angle Beam Guided Wave Probe Design for Tubing Based on Solid Mechanics

  • Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.594-604
    • /
    • 2003
  • A State-of-art methodologies on implementing conventional piezoelectric and flexible PVDF elements for generating ultrasonic guided waves in a tubing are presented. Comb transducers with PVDF can be efficiently applied to selectively excite a guided wave mode by wrapping around any size pipe while a conventional immersion type piezo-elements can be also possibly used with a modification of transducer fabrication. Technical comparisons between the use of angle beam probe and comb one will be also discussed in detail. The presented technique can be easily applied to NDE for a long range inspection of tubular structures.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Vision-based technique for bolt-loosening detection in wind turbine tower

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Choi, Sang-Hoon;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.709-726
    • /
    • 2015
  • In this study, a novel vision-based bolt-loosening monitoring technique is proposed for bolted joints connecting tubular steel segments of the wind turbine tower (WTT) structure. Firstly, a bolt-loosening detection algorithm based on image processing techniques is developed. The algorithm consists of five steps: image acquisition, segmentation of each nut, line detection of each nut, nut angle estimation, and bolt-loosening detection. Secondly, experimental tests are conducted on a lab-scale bolted joint model under various bolt-loosening scenarios. The bolted joint model, which is consisted of a ring flange and 32 sets of bolt and nut, is used for simulating the real bolted joint connecting steel tower segments in the WTT. Finally, the feasibility of the proposed vision-based technique is evaluated by bolt-loosening monitoring in the lab-scale bolted joint model.

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X.;Lam, D.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.517-539
    • /
    • 2010
  • This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

Shear transfer mechanism in connections involving concrete filled steel columns under shear forces

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.449-460
    • /
    • 2018
  • This paper reports the experimental results of three through bolt beam-column connections under pure shear forces using modified push-out tests. The investigated specimens include extended end-plates and six through-bolts connecting square concrete-filled steel tubular column (S-CFST) to steel beams. The main goal of this study is to investigate if and how the mechanical shear connectors, such as steel angles and stud bolts, contribute to the shear transfer mechanisms in the steel-concrete interface of the composite column. The contribution of shear studs and steel angles to improve the shear resistance of steel-concrete interface in through-bolt connections was investigated using tests. The results showed that their contribution is not significant when the beam-column connection is included in the push-out tests. The specimens failed by pure shear of the long bolts, and the ultimate load can be predicted using the shear resistance of the bolts under shear forces. The predicted values of load allowed obtaining a good agreement with the tests results.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

고등어(Scomber japonicus) 피부계의 미세구조 및 조직화학 (Ultrastructure and Histochemistry of the Integumentary System of the Chub Mackerel, Scomber japonicus (Teleostei: Scombridae))

  • 진영국;이정식
    • 한국어류학회지
    • /
    • 제17권2호
    • /
    • pp.98-104
    • /
    • 2005
  • Integumentary structures of the chub mackerel (Scomber japonicus) were examined by light and transmission electron microscopy. The integument of the fish was composed of epidermal and dermal layers. The epidermal thickness is about $20{\mu}m$ in TL 35~40 cm fish. The epidermal layer could be classified into superficial, intermediate, and basal layers by morphology and position of the supporting cells. The epidermal layer also possessed mucous cells, club cells and chloride cells. The area of secretory cells, including mucous and club cells, is about 23% of the epidermal layer. The mucous materials were identified as sulfated glycoprotein, neutral and acid in nature. Club cells had a large central vacuole and rough endoplasmic reticula in the cytoplasm. Chloride cells had numerous tubular mitochondria in the cytoplasm. The dermal layer consists mainly of collagenous fiber, and it contains fibrocytes, pigment cells and cycloid scales.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.