• 제목/요약/키워드: Tubular Cell

검색결과 293건 처리시간 0.029초

태아 고환에서 버팀세포의 미세형태학적 연구 (An Ultrastructural Study of Sertoli Cells in Human Fetal Testes)

  • 이태진;윤삼현;김미경;박언섭;유재형
    • Applied Microscopy
    • /
    • 제31권2호
    • /
    • pp.157-165
    • /
    • 2001
  • 정상 성인 고환의 버팀세포(Sertoli cell)는 비분열세포이며, 정세관(seminiferous tubule)단면에서 비교적 불분명하게 관찰되고, 정세관 세포 성분의 $10\sim15%$를 차지하고 있다. 전자현미경적으로 버팅 세포는 특징적인 핵소체와 원형질막 및 세포질 소기관을 갖고 있다. 원형질막은 사춘기에 발달한 두 종류 즉 버팅세포와 버팀세포 및 버팅세포와 생식세포 사이의 세포연접을 가지고 있다. 그러나 태이에서 버팅세포의 정확한 미세구조에 대한 기술은 드물다. 이에 본 저자는 태아 고환의 발생 제 14주부터 제27주 사이의 17예를 수집하여 정상 미세구조를 확인하고, 태아기 버팀세포의 분화 양상을 알아보고자 하였다. 태아기에서 버팀세포와 생식세포 및 버팀세포와 버팀세포 사이의 세포연접은 부착반점과 비슷한 구조로 이루어져 있었고, 이들은 관찰 대상인 태령 제14주부터 관찰되었다. 태아기 버팅세포의 세포소기관의 발달은 전반적으로 미약하였다. 비교적 풍부하게 사립체가 태령 제14주부터 관찰되었고, 무과립세포질세망이 소수, 그리고 과립세포질세망이 비교적 풍부하게 관찰되었다. 지방소포의 수는 비교적 일정하게 관찰되었고, 포도당입자는 발생 단계에 따라 점차 증가하는 소견을 보였다. 미세섬유와 Charcot-Bottcher의 결정소체는 본 연구대상에서는 관찰되지 않았다. 결론적으로, 태아기의 버팀세포에서는 어른에서 관찰되는 특징적인 소견들이 관찰되지 않았으며, 어른과는 다소 다른 전자현미경 소견을 나타냈다. 하지만 버팅세포의 분화양상을 정확히 알기 위해서는 태령 제27주 이후부터 사춘기까지의 연구가 추가되어야 할 것으로 생각한다.

  • PDF

방사선조사 후 타액선 세포와 혈관 내피세포의 DNA합성에 관한 면역조직학적 연구 (AN IMMUNOHISTOCHEMICAL STUDY ON DNA SYNTHESIS OF SALIVARY GLAND TISSUE CEllS AND ENDOTHELIAL CELL AFTER IRRADIATION)

  • 신종섭;유동수
    • 치과방사선
    • /
    • 제21권2호
    • /
    • pp.183-197
    • /
    • 1991
  • After single fraction of 2, 5, 10 Gy irradiation on submandibular gland of 40 male rats, weighing 150gm, respectively, these animal were sacrificed two hours after 0.1㎎/g bromodeoxyuridine (Sigma) peritoneal injection in 1, 3, 7, 15 hours, 1, 3, 7 days after irradiation. And excised submandibular gland were fixed in Carnoy's and Bouin's solution for 2 hours. Paraffin sections were stained with H&E, and PAS for the observation of the change of salivary gland tissue, and with Feulgen for the study of the DNA distribution, and immunohistochemically stained with anti-bromodeoxyuridine (Sanbyo Co.) for detection of DNA synthetic cells in order to study the distribution of DNA synthetic cells of salivary gland tissue and endothelium after irradiation in 5 different sites of 6 slides on X 200 high power field. The results were as followings. 1. In PAS staining 3 days after 5Gy irradiation, decreased mucine secretion of serous cells were found, and 7 days after l0Gy irradiation, decreased mucine secretion of mucous cells were found. 2. In histopathologic features, degeneration of serous cells were found in 3 days after 2 Gy irradiation and there was little change in mucous cells and excretory duct cells. 3. In Feugen staining, 3 days after 2 Gy, 5 Gy irradiation, more high percentage of DNA synthetic cells were found in intercalated duct cells, striated duct cells and excretory duct cells than in BrdU staining. 4. In immunohistochemical features, DNA synethsis of serous cells and granular convoluted tubular cells abruptly decreased in early period after irradiation and showed no recovery in 7 days after irradiation but there was an increase in DNA synthesis of intercalated duct cells, striated duct cells and excretory duct cells, which have less S-phase cells comparatively, in 7 days after 2 Gy, 5 Gy irradiation. 5. In immunohistochemical features, the DNA synthesis of endothelial cells was continuously decreased after irradiation but showed slight increase in 7 days after 2 Gy and S Gy irradiation.

  • PDF

신세뇨관(腎細尿管) 상피세포(上皮細胞)에서 산화(酸化)로 유발(誘發)된 apoptosis에 대한 호도약침액(胡桃藥鍼液)의 방어효과(防禦效果) (Protective effect of Juglans sinensis Dode extract (JS) on oxidant-induced apoptosis in renal epithelial cells)

  • 박인범;안창범;장경전;송춘호;윤현민;김철홍
    • Journal of Acupuncture Research
    • /
    • 제21권3호
    • /
    • pp.1-12
    • /
    • 2004
  • Objective: This study was undertaken to evaluate the role of lipid peroxidation in oxidant-induced apoptosis and effect of JS on the apoptosis in opossum kidney (OK) cells, an established renal proximal tubular cells. Methods : Exposure of cells to 0.1mM tBHP for 2hr did not induce apoptosis, but subsequent incubation in normal culture medium for 18hr after tBHP treatment induced apoptotic cell death which is dependent of tBHP concentration. Results : JS decreased tBHP-induced apoptotic cell death in a dose-dependent fashion and at concentrations higher than 0.01 mg/ml completely prevented the apoptosis. tBHP-induced apoptosis was prevented by the lipid soluble antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) and water-soluble antioxidant Trolox. tBHP increased lipid peroxidation, which was inhibited by JS and DPPD. tBHP-induced DNA damage was prevented by JS and DPPD. Conclusion : These results indicate that tBHP induces apoptosis through a lipid peroxidation-dependent mechanism and JS exerts the protective effect against the apoptosis by preventing peroxidation of membrane lipids.

  • PDF

Differential Expression of $PKD2$-Associated Genes in Autosomal Dominant Polycystic Kidney Disease

  • Yook, Yeon-Joo;Woo, Yu-Mi;Yang, Moon-Hee;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Lee, Min-Joo;Lee, Sun-Young;Park, Jong-Hoon
    • Genomics & Informatics
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2012
  • Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of multiple fluid-filled cysts that expand over time and destroy renal architecture. The proteins encoded by the $PKD1$ and $PKD2$ genes, mutations in which account for nearly all cases of ADPKD, may help guard against cystogenesis. Previously developed mouse models of $PKD1$ and $PKD2$ demonstrated an embryonic lethal phenotype and massive cyst formation in the kidney, indicating that $PKD1$ and $PKD2$ probably play important roles during normal renal tubular development. However, their precise role in development and the cellular mechanisms of cyst formation induced by $PKD1$ and $PKD2$ mutations are not fully understood. To address this question, we presently created $Pkd2$ knockout and $PKD2$ transgenic mouse embryo fibroblasts. We used a mouse oligonucleotide microarray to identify messenger RNAs whose expression was altered by the overexpression of the $PKD2$ or knockout of the $Pkd2$. The majority of identified mutations was involved in critical biological processes, such as metabolism, transcription, cell adhesion, cell cycle, and signal transduction. Herein, we confirmed differential expressions of several genes including aquaporin-1, according to different $PKD2$ expression levels in ADPKD mouse models, through microarray analysis. These data may be helpful in $PKD2$-related mechanisms of ADPKD pathogenesis.

[Pt(II)(cis-DACH) (DPPE)] .$2NO_3$: A Novel Class Of Platinum Complex Exhibiting Selective Cytotoxicity to Human Ovarian Carcinoma Cell Lines and Normal Kidney Cells

  • Jung, Jee-Chang;Chu, Min-Ho;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • Biomolecules & Therapeutics
    • /
    • 제5권2호
    • /
    • pp.125-132
    • /
    • 1997
  • Cisplatin, a platinum-complex, is currently one of the most effective compounds used in the treat-ment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving selective cytotoxicity. We synthesized new Pt (II) complex analogue containing 1,2-diaminocyclohexane (DACH) as carrier ligand and 1,2-bis (diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(cia-DACH)(DPPE)] . $2NO_3$ (PC) was synthes-ized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $_{13}$carbon nuclear magnetic resonance (NMR)] .PC demonstrated acceptable and significant antitumor activity against SKOV-3 and OVCAR-3 human ovarian carcinoma cell lines as compared with that of cisplatin. The cytotoxicity of PC in normal cells was found quite less than that of cisplatin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), ($^3$H)thymidine uptake and glucose consumption tests in rabbit renal proximal tubular cells, human renal cortical cells and tissues. In conclusion, PC is considered to be more selective cytotoxicity toward human ovarian cancer cells than normal human/rabbit kidney cells.

  • PDF

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.

꼬막(Tegillarca granosa) 외투막의 미세구조 (Mantle Ultrastructure of the Granular Ark, Tegillarca granosa (Bivalvia: Acridae))

  • 마경화;이정식
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.270-275
    • /
    • 2003
  • Histochemical characteristic and ultrastructure of the mantle of the granular ark, Tegillarca granosa are described using light and electron microscopy. The mantle of the clam is composed of outer epidermis, connective tissue and inner epidermis. The simple epidermis consists of supporting cells, ciliated cells of the two types and secretory cells of three types. Connective tissue is composed of matrix, collagen fibers, muscular fibers and hemolymph sinus. The columnar supporting cell is covered with microvilli on the free surface. Ciliated cells are distributed in the inner epidermis with numerous cilia, microvilli and tubular mitochondria. Secretory cells could be classified into three types (A, B and C) with morphological features of the secretory granules. Type A secretory cells contains secretory granules with fibrous materials of high electron density Type B secretory cells are more abundant than the other cells, and contains secretory granules of membrane-bounded and high electron density. Secretory granules of the type C cells are divided into fibrous core layer and homogeneous peripheral layer. Type B secretory cells are abundant in the both epidermis of marginal mantle, while large number of type A and C secretory cells are evident in the outer epidermis of the central and umbonal mantle. This result showed that the outer and the inner epidermis of the mantle are related with shell formation and cleaning of the mantle cavity, respectively.

Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-negative Breast Cancer Cells

  • Luan, Yun-Yan;Liu, Zi-Min;Zhong, Jin-Yi;Yao, Ru-Yong;Yu, Hong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.531-535
    • /
    • 2015
  • Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs ($100{\mu}g$/ml) and GSPs ($200{\mu}g/mL$) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an p otential anti-VM botanical agent for human TNBCs.

임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지 (Nanotechnology in the Surface Treatment of Titanium Implant.)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제48권2호
    • /
    • pp.106-112
    • /
    • 2010
  • 아직까지 나노관련 기술이 티타늄 임플란트에 직접적으로 사용되는 부분이 상당히 미약하다. 하지만, 수직으로 정렬된 구조를 가지는 티타니아 나노튜브는 생체 내 대부분의 임플란트 재료로 사용되는 티타늄의 차세대 개발에 있어서 가장 중요한 영향을 미칠 것이다. 본문에 설명되어 있는 내용들 뿐 만이라, 티타니아 나노튜브는 파골세포의 골 흡수성 방지, 줄기세포의 특정 성체세포로의 분화, 연골세포의 재분화, 간세포를 이용한 생물 반응기(bio-reactor) 개발 등 생체재료의 여러 분야에서 많이 연구되고 있다. 특히, 줄기세포에 관한 연구는 차세대 임플란트 개발에 있어서 가장 중요한 연구 분야 중의 하나로서, 골을 형성하는 조골세포와 골을 파괴하는 피골세포 모두 줄기세포 로부터 만들어진다는 것을 유념해야 할 것이다. 만약, 티타니아 나노튜브의 독특한 나노구조를 이용하여 줄기세포의 조골세포로의 직접 분회를 제어하는 기술이 개발되어 상업화된다면, 이 기술을 기반으로 하여 현 재까지 개발된 모든 표면 증착 및 코팅 기술을 새롭게 이용하는 차세대 티타늄 임플란트의 개발을 위한 초석이 되리라고 본다.

광어노드의 수소 제조와 광전기 특성에 관한 상관관계 연구 (Study on Relation between $H_2$ Evolution and Photoelectrical Properties of Photoanode)

  • 배상현;강준원;심은정;윤재경;주현규
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.244-249
    • /
    • 2007
  • The present work considers the concept of enzymatic photoelectrochemical generation of hydrogen through water splitting using a Xe lamp as a source of light. A solar cell was applied to the system in order to shift the level of electrochemical energy of the system, resulting in the rate of hydrogen production at $43\;{\mu}mol/(cm^2{\times}hr)$ in cathodic compartment with an anodized tubular $TiO_2$ electrode(ATTE, $5^{\circ}C$/1hr in 0.5 wt% HF-$650^{\circ}C$/5hr). The trend of the rate of hydrogen production, for the ATTEs with different annealing temperature from $350^{\circ}C$ to $850^{\circ}C$, fairly well coincided with the photoelectrical properties measured by potentiostat. The actual chemical bias through imposition of two electrolytes of different pHs between anode(13.68) and cathode(7.5) was 0.24eV.