• Title/Summary/Keyword: Tube Warm Hydroforming

Search Result 13, Processing Time 0.02 seconds

Warm Hydroforming Characteristics of High Strength Aluminum Tubes (고강도 알루미늄 튜브의 온간 하이드로포밍 특성)

  • 이문용;강창룡;이상용
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.403-408
    • /
    • 2004
  • Hydroformability of 6061 and 7075 aluminum tube materials was studied by warm hydroforming experiments. A special tooling and heating system was designed and manufactured in order to perform warm hydroforming between room temperature and $300^{\circ}C$. The control of tube temperature for warm hydroforming was made by the control of temperature of oil medium. Warm hydroformability was analyzed by tube appearances, tube elongation and hardness values. Hydroforming characteristics of 6061 and 7075 tubes showed different temperature dependence between room temperature and $300^{\circ}C$. The difference in hydroformabilities of 6061 and 7075 at elevated temperatures was interpreted by the different sensitivity to dynamic strain aging of both aluminum materials.

A study on the formability with heat treatment and deformation temperature in warm hydroforming of Al 6061 tube (Al6061 tube의 열처리조건과 온도에 따른 액압성형성에 관한 특성 연구)

  • Yi H. K.;Lee Y. S.;Moon Y. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.255-258
    • /
    • 2005
  • In this study, the effect of heat treatment conditions and deformation temperature on the formability were investigated in warm hydroforming of Al 6061 tube. Full annealing and T6-treatment for heattreatment of Al6061 tube were used in this study. To evaluate the hydroformability, uniaxial tensile test and bulge test were performed between room temperature and $300^{\circ}C$. And measured flow stress was used to simulate the hydroforming of Al 6061. A commercial FEM code, DEFORM2D, was used to calculate the damage and strain variation. The calculated values were efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

A study on the formability in warm hydroforming of Al 6061 seamless tube (온간액압성형공정에서 Al 6061 튜브의 소성변형특성에 관한 연구)

  • Yi, H.K.;Lee, Y.K.;Lee, J.H.;Sohn, S.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.318-321
    • /
    • 2006
  • In this strudy, the free-bulge test and FE analysis have been used to define the fracture criteria based on the cockroft and Latham's criterion in warm hydroforming of Al 6061 tube. Full annealing and T6 treatment for heat treatment of Al 6061 tube ware used in this study. As-extruded, full annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed between room temperature and $200^{\circ}C$. And measured flow stress was used to simulate the warm hydroforming. A commercial FEM code, DEFORM-$2D^{TM}$, was used to calculate the damage value. A forming limit based ductile fracture criteria has been proposed by the results of experimental and FE analysis. The calculated values for fracture criteria will be efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

Process Design for the Tubular Hydroforming at Elevated Temperatures (온간 하이드로포밍 공정을 위한 시스템 설계)

  • Kim, B.J.;Park, K.S.;Sohn, S.M.;Lee, M.Y.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

Development of Manufacturing Technology for Aluminum Automotive part with Warm Hydroforming (온간하이드로포밍을 이용한 알루미늄 자동차부품 제조기술 개발)

  • Sohn, S.M.;Lee, M.Y.;Kim, B.J.;Moon, Y.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.93-98
    • /
    • 2006
  • Warm forming technology was classified into hot gas forming of using compressible fluid as a nitrogen gas and warm hydroforming of using the incompressible fluid as a thermal oil by using medium fluid. In this study, the aluminum side-rail part was developed with warm hydroforming technology. For the warm hydroforming system, top and bottom die was designed to insert heating cartridge in die cavity and special indirect fluid heating system was designed to heat the thermal oil. As increase the temperature, hydroformability was increased linearly. Aluminum side-rail center part was formed 90% at the internal pressure of 100bar and perfectly formed at 300bar within a moderate temperature. The tube material used for warm hydroforming was a aluminum 6000 series alloy with the diameter of 120mm, thickness of 5mm, length of 1,300mm. Warm hydroformed side-rail center part had 20% of maximum expansion ratio and below 20% of maximum thinning ratio at corner radius. This results were provided to show warm hydroforming possibility for aluminum automotive components.

  • PDF

Prediction for Forming Limit of Tube Warm Hydroforming Based on the Ductile Fracture Criteria (연성파괴 이론을 적용한 튜브 온간액압성형의 성형한계 예측)

  • Yi, H.K.;Moon, Y.H.;Lee, J.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • Hydroformability and fracture criteria of FE analysis based on ductile fracture were investigated in warm hydroforming of A16061 tube. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at room temperature and $200^{\circ}C$. The measured flow stresses were used as input parameters for FE analysis. The damage values were calculated by FE analysis based on ductile fracture criteria at maximum radius of free bulged tubes. Damage values were compared of hexagonal shaped hydroformed parts. As a result, the formability by critical damage value for extruded tube is lower than that of full annealed tube up to 0.5.

A study on the deformation characteristic of heat-treated 6061,7075 aluminum alloy with changes of elevated temperature and strain rate for warm hydroforming (열처리된 알루미늄 6061, 7075 합금의 온간 액압 성형 적용을 위한 온도 및 변형 속도 변화에 따른 변형 특성 연구)

  • Yi H. K.;Moon Y. H.;Sohn S. M.;Lee M. Y.;Suh D. W.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • The deformation behaviors of fully annealed or T6-treated 6061 and 7075 aluminum tubes are investigated at elevated temperature using uniaxial tensile test. Fully annealed 6061 and 7075 tube, and T6-treated 7075 tube do not show sharp local necking with an elongation of $50\%$ at tensile temperature of $300^{\circ}C$, accordingly, it is expected that warm hydroforming process can be applied. The increase of tensile temperature does not significantly affect the total elongation of T6-treated 6061 tube.

  • PDF

Finite Element Analysis and Experimental Confirmation of Warm Hydroforming Process (온간 하이드로포밍에 관한 유한요소해석 및 실험적 검증)

  • Kim, B.J.;Park, K.S.;Choi, K.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.277-280
    • /
    • 2006
  • The hydroformability of aluminum alloy sheets at elevated temperatures have been investigated in this study. It is necessary to analyze the variations of the mechanical properties that depend on the forming temperature and the heat conduction during warm hydroforming. Therefore, in this study a coupled simulation of plastic deformation and temperature distribution in the warm hydroforming process is performed and compared with experimental data. The multi-purpose code DEFORM-2D can handle this type of calculations but it takes high computation time if contact heat transfer between die, tube and pressure medium occurs. Experiments were conducted by high temperature tribometer(pin-on-disk) allowing measuring the friction coefficients of the aluminum alloys at several temperatures and these results are applied to the coupled simulation by which the optimal process parameters such as internal pressure and preset temperature on hydroformability can be determined. The comparison of the FE analysis with the experimental results has shown that hydroformability given by bulge height, and temperature distribution of the tube specimen make a little difference with the FE results but the trend predicted by simulation agrees well with experiments.

  • PDF

Effect of process type and heat treatment conditions on warm hydroformability (온간액압성형특성에 미치는 압출제조공정과 열처리 조건의 영향)

  • Yi, H.K.;Kwon, S.O.;Park, H.K.;Yim, H.S.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.132-135
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $250^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $250^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

Effect of Heat Treatment Conditions on Formability and Property of Warm Hydroformed Parts for Al 6061 Extruded Tube (Al6061압출재를 이용한 온간액압성형품의 성형성 및 물성에 미치는 열처리조건의 영향)

  • Yi, Hyae-Kyung;Kwon, Seung-O;Jang, Jeong-Hwan;Lee, Young-Seon;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.181-186
    • /
    • 2007
  • Effect of heat treatment conditions on formability and property of warm hydroformed parts for Al 6061 extruded tubes was investigated in this study. For the investigation, as-extruded, fully annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the warm hydroformability, uni-axial tensile test and free bulge test were performed at various pre- and post-heat treatment conditions. And the tensile test specimens were obtained from hexagonal prototype hydroformed parts at $250^{\circ}C$. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and strain of hydroformed part reach to 330 MPa and 12%, respectively, when the part was T6 treated after warm hydroforming. However, the hydroformability of T6 pre-treated tube is relatively low due to the decreased elongation, 8%.