• Title/Summary/Keyword: Tube Train

Search Result 66, Processing Time 0.034 seconds

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Comparison of Different Microanastomosis Training Models : Model Accuracy and Practicality

  • Hwang, Gyo-Jun;Oh, Chang-Wan;Park, Sukh-Que;Sheen, Seung-Hun;Bang, Jae-Seung;Kang, Hyun-Seung
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.4
    • /
    • pp.287-290
    • /
    • 2010
  • Objective : The authors evaluated the accuracies and ease of use of several commonly used microanastomosis training models (synthetic tube, chicken wing, and living rat model). Methods : A survey was conducted among neurosurgeons and neurosurgery residents at a workshop held in 2009 at the authors' institute. Questions addressed model accuracy (similarity to real vessels and actual procedures) and practicality (availability of materials and ease of application in daily practice). Answers to each question were rated using a 5-point scale. Participants were also asked what types of training methods they would chose to improve their skills and to introduce the topic to other neurosurgeons or neurosurgery residents. Results : Of the 24 participants, 20 (83.3%) responded to the survey. The living rat model was favored for model accuracy (p<0.001; synthetic tube $-0.95{\pm}0.686$, chicken wing, $0.15{\pm}0.587$, and rat, $1.75{\pm}0.444$) and the chicken wing model for practicality (p<0.001; synthetic tube $-1.55{\pm}0.605$, chicken wing, $1.80{\pm}0.523$, and rat,$1.30{\pm}0.923$). All (100%) chose the living rat model for improving their skills, and for introducing the subject to other neurosurgeons or neurosurgery residents, the chicken wing and living rat models were selected by 18 (90%) and 20 (100%), respectively. Conclusion : Of 3 methods examined, the chicken wing model was found to be the most practical, but the living rat model was found to represent reality the best. We recommend the chicken wing model to train surgeons who have mastered basic techniques, and the living rat model for experienced surgeons to maintain skill levels.

Design Development for the Ocean & Leasure Industry (해양레저산업 활성화를 위한 아이디어 상품 디자인개발 사례)

  • Kang, Bum-Kyu;Lee, Bo-Bae;Kim, Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.116-127
    • /
    • 2012
  • With the recent rapid growth in the number of people who enjoy marine and leisure activities in Korea, the marine leisure industry faces good opportunities for development. Korean brands are in between them. In this situation, new and innovative products related to an inflatable tube, which is one of the most popular marine leisure items, will help to increase sales of domestic companies and to pioneer a new market. Research methods are largely divided into 4: investigation, analysis & synthesis, development and evaluation. This paper introduces a "tube cushion" which is an inflatable tube covered by fabrics. It can be functioned at home 365 days a year as a cushion or a children's plaything. Tactile fabrics, neoprene and air-mesh, are used as the cover with a zipper, making it easy to open and close. Moreover, by putting together tubes and connecting them with snap fastener attached straps, the cushion can be transformed into a chair, a table, a tunnel, a train, and so on, serving as a creative plaything for children. With this paper, it is expected that new and innovative items differentiated from others, like this crossover tube cushion, will help to create a 'Blue Ocean' market for the marine leisure industry from the long-term perspective.

One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel (고속철도 터널내를 전파하는 압축파의 일차원 수치해석)

  • 김희동;엄용균;송미일태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

Distribution of Airborne Fungi, Particulate Matter and Carbon Dioxide in Seoul Metropolitan Subway Stations (서울시 일부 지하철역 내 부유 진균, 입자상 물질, 이산화탄소의 분포 양상)

  • Kim, Ki-Youn;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.4
    • /
    • pp.325-330
    • /
    • 2006
  • Objectives: The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. Methods: The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. Results: In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, $PM_{10}\;and\;PM_{2.5}$, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean $PM_{10}\;and\;PM_{2.5}$ concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). Conclusions: The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

A Study of Fuel Reduction Driving Pattern on Diesel Locomotives (연료절감운전 패턴 연구)

  • Son, Kyoung-So;Kim, Dae-Sik;Kim, Ho-Soon;Kim, Teak-Sung;Park, Tae-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1405-1411
    • /
    • 2011
  • It is very often for the experienced diesel locomotive drivers to identify the proper replacing time for the fuel adjustment tube only based on their experience. Because of that, sometimes the locomotive's fuel is burned out due to the unnecessary torque. Or sometimes, the locomotive does not operate with its accelerating performance because the fuel is not supplied at the appropriate moment. Meanwhile, recent typical auto vehicles provide drivers with the average fuel efficiency and the instant fuel efficiency in real-time. By providing the real time display mentioned above, it is one of the good examples that those drivers, who had driven their cars not properly and used a lot of fuel with their bad driving habits, obtain the efficient driving pattern by continuous educating effect. Similarly, if the diesel locomotive provides the train driver with the optimal driving pattern within a certain driving section, it will be effective for fuel saving. It is possible to make the most effective driving pattern by performing the repeated trial running especially for the railway because the track's operating routes, its grades, and etc are relatively precise. This research analyzes the result data which was obtained by many times trial running on the identical section after equipping the fuel use measuring device to a certain test vehicle, and confirms the fuel saving effect depending on the driving pattern along the test section. At the same time, the research to establish the optimal driving pattern was progressed.

  • PDF

Flow Analysis Using 1 and 3 Dimensional Hybrid Mesh For Ultra-High Speed Vehicle Inside A Long Distance Tunnel (1-3차원 혼합격자를 이용한 장거리 터널 내 고속 운송체 유동해석)

  • Kim, Tae-Kyung;Choi, Joong-Keun;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.107-118
    • /
    • 2011
  • This paper performs flow analysis of ultra-high speed vehicle inside the long distance tunnel. One and three dimensional hybrid mesh was used for describing moving motion and flow analysis of an vehicle inside a long distance tunnel which over 20 km. Flow analysis and aerodynamic drag measuring were performed by three dimensional mesh: around vehicle, and pressure waves of a tunnel was measured by one dimensional mesh: the other region where rare changing of flow pattern.

  • PDF

A study on crash energy absorption design of passenger-car extreme structure of tilting train prototype (한국형 고속틸팅열차의 중간부 충돌에너지 흡수구조에 대한 연구)

  • Kwon T.S.;Jung H.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.326-330
    • /
    • 2005
  • Crahworthy design of trains is now indispensable procedure in modern railway vehicle design for ensuring the safety of passengers and crew. It is now widely recognized that a more strategic approach is needed in order to absorb higher level energy in a controlled manner and minimize passenger injuries effectively. The first design step in this strategic approach is the design of the front end structure(so called HE extremities) to absorb a large part of total impact energy and then the structure of passengers non-accommodation zones(so called HE extremities) is designed to absorb the rest of impact energy. In this paper, the passengers entrance door area is selected as the LE(low energy) extremities and the design of the LEE was carried out. The main part of LEE design procedures is the design of energy absorbing tubes. For this purpose, the several tube candidates are introduced and compared to each others with numerical crash simulation.

  • PDF

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

A Study on the Behavior of Skid Gear During the Helicopter Autorotation (헬리콥터 오토로테이션시 착륙장치 거동에 관한 연구)

  • Choi, Hyung-Tai;Oh, Jung-Jin;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.746-753
    • /
    • 2012
  • ROK military helicopters are frequently exposed to the hazard situations due to the characteristic of operation. Especially, helicopter accident may lead to critical damage of human and structure. Accordingly, pilots have to train the autorotation procedures and learn the skill to prevent hard landing. In this paper, the behavior of skid gear subject to the helicopter autorotation was conducted by using numerical method. The computer simulation approach by using finite element method was employed to accomplish this goal. Additionally, the behavior of skid gear was evaluated for the different landing conditions. In conclusion, the maximum stress concentration was occurred at the attached area of skid cross-tube to the fuselage. Also, it was revealed that the most proper attitude was level landing to prevent hard landing.