• Title/Summary/Keyword: Tube Temperature

Search Result 2,038, Processing Time 0.034 seconds

A Study on the Post Deformation According to an Environmental Temperature of the Plastic Fuel Tube for Automobile (자동차용 플라스틱 연료튜브의 환경온도에 따른 후변형에 관한 연구)

  • Park, J.S.;Moon, C.Y.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.56-60
    • /
    • 2003
  • Recently the plastic fuel tube is usually used to reduce production cost and weight in automobiles. These days, material used to plastic fuel tube is the polyamide12. The fuel tube is made of the PA12. Post deformation of the tube has been changed by environmental temperature. So, it is important to prevent post deformation. The experiment is performed to investigate post deformation of the tube produced by each bending process. In this study, the results we obtained are used to bending process system for post deformation as the environmental temperature of the tube. It turned out that the method of steam heating and air cooling was shown less deformation than other methods.

  • PDF

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

A numerical study on the flow characteristics and condensed water inflow in the Venturi tube with T-branch tube (T-분지관이 부착된 벤튜리관의 유동특성과 응축수 유입에 대한 수치해석 연구)

  • Kim, S.I.;Park, S.H.;Hwang, J.G.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.173-181
    • /
    • 2019
  • This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.

Ice Making Characteristics according to Shape and Diameter on Ice-on-Coil Tube (관외착빙형 제빙관의 형태 및 관경 변화에 따른 제빙 특성)

  • Park, K.W.;Jeong, E.H.;Hwang, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.32-39
    • /
    • 2012
  • The study experimented to understand ice-on-coil type ice making characteristics on to 3 kinds of circular tube, oval tube and small diameter tube using ice maker. The experiment were carried out under various conditions, that used brine temperature($-10^{\circ}C$, $-6^{\circ}C$), brine flow rate(1.0m/s, 1.8m/s) and inlet water temperature ($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per ice making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. Oval ice making tube produced ice 1.11 to 2.46 times that of 9mm circular ice making tube, and 3mm small diameter ice making tube produced ice 1.06 to 1.51 times that of 9mm circular ice making tube.

Enthalpy transport in pulse tube refrigerators (맥동관냉동기의 앤탈피이동)

  • 강영구;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

A study on the analysis of heat flow in X-ray tube (X-ray tube 내 열유동 해석에 관한 연구)

  • Yun, Dong-Min;Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.26-31
    • /
    • 2021
  • As the aging ages, the disease also increases, and the development of AI technology and X-ray equipment used to treat patients' diseases is also progressing a lot. X-ray tube converts only 1% of electron energy into X-ray and 99% into thermal energy. Therefore, when the cooling time of the anode and the X-ray tube are frequently used in large hospitals, the amount of X-ray emission increases due to temperature rise, the image quality deteriorates due to the difference in X-ray dose, and the lifespan of the overheated X-ray tube may be shortened. Therefore, in this study, temperature rise and cooling time of 60kW, 75kW, and 90kW of X-ray tube anode input power were studied. In the X-ray Tube One shot 0.1s, the section where the temperature rises fastest is 0.03s from 0s, and it is judged that the temperature has risen by more than 50%. The section in which the temperature drop changes most rapidly at 20 seconds of cooling time for the X-ray tube is 0.1 seconds to 0.2 seconds, and it is judged that a high temperature drop of about 65% or more has occurred. After 20 seconds of cooling time from 0 seconds to 0.1 seconds of the X-ray tube, the temperature is expected to rise by more than 3.7% from the beginning. In particular, since 90kW can be damaged by thermal shock at high temperatures, it is necessary to increase the surface area of the anode or to require an efficient cooling system.

Effect of Arrangement of Heat Transfer tube on the Thermal Performance for the High Temperature Generator (전열관 배열에 의한 고온재생기 열적 성능 변화)

  • Lee, In-Song;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.266-271
    • /
    • 2009
  • The present study numerically investigated the effect of the geometry of the flattened tube on the thermal performance of a high temperature generator (HTG) of a double effect LiBr-water absorption system. The heat transfer tubes of the HTG were arranged behind a metal fiber burner. The heat transfer of the tubes of HTG were consisted with a set of circular and flattened tubes in series. FLUENT, as a commercial code, was applied for estimating the thermal performance of the HTG. Key parameters were the tube arrangement in the HTG. Temperature and velocity profiles in the HTG were calculated to estimate the thermal performance of the HTG. The heat transfer rate of a HTG tube was increased, and the gas temperature around the flattened tube was decreased as the pitch ratio was increased. The heat transfer rate for the circular tube bundle with the pitch ratio of 2.48 were larger by 10% respectively than that of 2.10 and the heat transfer rate for the flattened tube bundle with the pitch ratio of 1.88 were larger by 36% respectively than that of 1.63.

  • PDF

A study on the non-contact measurement for the temperature of shadow mask of Cathode Ray Tube using InSb photo sensor (인듐안티모나이드 포토 센서를 이용한 CRT 섀도우 마스크의 비접촉 온도 측정에 관한 연구)

  • 강대진;박정우;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 1997
  • This paper presents the experimental study of the non-contact temperature measurement for the shadow mask of cathode ray tube using InSb sensor. At present, High resolution of CRT(Cathode Ray Tube) is needed broadly; therefore, the measurement of temperature distribution of shadow mask in CRT during operation is important to analyze the thermal deformation of shadow mask. Most of the studies could not measure the temperature distribution of shadow mask precisely. We studied the temperature dis- tribution of shadow mask using InSb photo sensor for 17" cathode ray tube (CRT). Experiments using ther- mocouple are performed to validate the results of non-contact measurement. The results agree well with those results of non-contact method using InSb sensor.nsor.

  • PDF

A Study on the Heat Transfer Characteristic of Insulated Multi Core Tube (단열 다심관의 열전달 특성에 관한 연구)

  • Park, Sang-Kyun;Lee, Tae-Ho;Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.604-608
    • /
    • 2015
  • In this paper, we study the characteristics of heat transfer for an insulated multi-core tube using glass wool as an insulator for the multi-core tube. By performing experiments and modeling, we examine the variations in the temperature characteristics of hydraulic oil inside the multi-core tube with atmosphere temperature, inlet temperature, and the flow rate of hydraulic oil for the insulated multi-core tube that we developed. When the minimum inlet flow rate of hydraulic oil employed within the scope of the research is 0.29 l/min, the temperature difference obtained in the experiments and numerical analysis was a maximum of $3^{\circ}C$. For a constant atmospheric temperature, as the inlet temperature of the hydraulic oil increases, the outlet temperature of the hydraulic oil will also increase, regardless of its inlet flow rate. Further, when the inlet flow rate of the hydraulic oil is more than 1.01 l/min, the effect of the atmospheric temperature on the temperature drop of the hydraulic oil is low.

Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation (화력발전 보일러 과열기 및 재열기 운전 중 튜브 온도예측기법)

  • Kim, Bum-Shin;Song, Gee-Wook;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The superheater and reheater tubes of a heavy-load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial-operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short-term prediction of tube temperature; the method involves the use of boiler operation information and flow-network-analysis-based tube heat flux. This method can help in high-temperaturedamage monitoring when it is integrated with a practical tube-damage-assessment method such as the Larson-Miller Parameter.