• 제목/요약/키워드: Tube Process

검색결과 1,463건 처리시간 0.035초

알루미늄 튜브의 열간가스 성형해석 (Hot Air forming Analysis of Aluminum Tube)

  • 김헌영;임희택;황상희;이기동;이우식;김대업
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.116-119
    • /
    • 2007
  • The application of light weight materials, such as aluminum alloy, has been limited due of their poor formability. Especially, aluminum alloy tube has limited expansion capability at most 15% at room temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive suspension components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to the high temperature should be investigated and determined to get a sound product. In this study, the effect of thermal properties and forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzed by using explicit finite element method.

  • PDF

Navier-Stokes 방정식을 사용한 수평원관상의 $LiBr-H_{2}O$ 흡수특성에 대한 연구 (Parametric Study on the $LiBr-H_{2}O$ Absorption Process on Horizontal Tubes Using Wavier-Stokes Equations)

  • 민준기;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.213-218
    • /
    • 1999
  • The $LiBr-H_{2}O$ absorption process on a horizontal tube has been analyzed using the numerical method which incorporates the fully elliptic Navier-Stokes equations for the momentum equations, the energy and mass-diffusion equations. On a staggered grid, the SIMPLER algorithm with the QUICK scheme is used to solve these equations along with the MAC method for the free surface tracking. With the assumption that the absorbent is linear, calculations have been made for various inlet temperature and flow-rate conditions. The detailed results of the parametric study, such as the temperature, concentration, absorption mass flux and wall heat flux distributions are presented. The self-sustained feature of the absorption process is clearly elaborated. The analyses have also been carried out for multiple tube arrangement and the results show that the absorption rate converges after a few tube rows.

  • PDF

Tracheal Foreign Body by Accidental Fracture of Tracheostomy Tube

  • 유재철;장문영;정영호;진홍률
    • 대한기관식도과학회지
    • /
    • 제13권2호
    • /
    • pp.68-71
    • /
    • 2007
  • Fractured tracheostomy tube presenting as foreign body in the tracheobronchial tree is very rare. Authors experienced a case of broken tracheostomy tube presenting as a foreign body in the trachea, which was removed with the help of flexible bronchoscope. A few causes could be suggested for the tube break: aging and deterioration of the tube with repeated use, a flaw of the tube in the manufacturing process, and a wrong sterilization.method causing weakness of the tube. We report this case with brief literature review.

  • PDF

알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성 (The characteristics of bending collapse of aluminum/GFRP hybrid tube)

  • 송민철;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

대형 튜브성형체의 노징 공법 연구 (Study on Nosing Method for Large Size Tube Formed Body)

  • 조창연;박주성;이종억;정덕진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.408-411
    • /
    • 2009
  • The plastic working process is a well-known molding method to produce products with good mechanical properties whilst reducing material loss and production time at the same time. Among those methods, the nosing process is commonly used for valves, tubes and ammunition which require high mechanical properties since it provides change in shape without additional mechanical process, minimum material loss during the post-process and superior properties. However, high manufacturing cost and time are required for the large-size tubes due to the multi-step nosing processes. In addition, there are some potential risks due to the buckling and property variation caused by the nosing process, too. Therefore, the shell nosing process is investigated and used in this study in order to resolve the problems described previously. Thus, we could obtain the process with lower cost and improved efficiency by means of the shell nosing process.

  • PDF

수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube)

  • 최이철;강병하;김석현
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

초소성 하이드로포밍과 확산 접합의 연속 공정을 위한 Ti-3Al-2.5V 튜브의 열처리 미세조직 (Heat-Treated Microstructures of Ti-3Al-2.5V Tube for the Successive Process of Superplastic Hydroforming and Diffusion Bonding)

  • 배근수;이상용
    • 열처리공학회지
    • /
    • 제29권2호
    • /
    • pp.56-61
    • /
    • 2016
  • Heating experiments using the Ti-3Al-2.5V tube materials in a vacuum furnace have been performed to investigate a pertinent range of working temperatures and holding times for the development of the successive or simultaneous operation of superplastic hydroforming and diffusion bonding. The specimens were heated at $820^{\circ}C$, $870^{\circ}C$ and $920^{\circ}C$ respectively. Holding times at each temperature were varied up to 4 hours. Holding times longer than 1 hour were selected to consider the diffusion bonding process after or during the hydroforming process in the superplastic state. Grain sizes were varied from $5.7{\mu}m$ of the as-received tube to $9.2{\mu}m$ after heating at $870^{\circ}C/4hours$. Homogeneus granular microstructures could be maintained up to $870^{\circ}C$, while microstructures at $920^{\circ}C$ showed no more granular type.

온간 하이드로포밍 공정을 위한 시스템 설계 (Process Design for the Tubular Hydroforming at Elevated Temperatures)

  • 김봉준;박광수;손성만;이문용;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

스위벨 밸브 튜브 커플러의 성능 향상을 위한 비교연구 (A Comparative Study on the Improvement of the Performance of Swivel Valve Tube Couplers)

  • 이준호;성재경
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.20-27
    • /
    • 2010
  • In this study, we improved problems in the existing product by PARKER and developed the swivel valve tube couplers that can be produced by a low price in Korea. The major development was that a modulized production method was implemented by introducing a part assembling method that uses a cocking jig, and the production cost was reduced by operating the production process more simply than that of PARKER. Also, it was possible to avoid the patient registered by PARKER through the differences in the number of grooving processes and the type of o-ring. In the results of the rotation test by varying its application angle after installing it to a vehicle, it was verified that the structure proposed in this study can endure the eccentric torque and transformation pressure for various angles that have been considered as the problem in the existing fixed tube couplers. In addition, the structure was developed to adopt the problem that represents differences in the installation position of an air tank or the length and direction of hoses according to the type of vehicles produced in vehicle manufacturers. Furthermore, it was possible to verify that the product developed in this study was more excellent than that of PARKER through comparing the performance according to the Federal Motor Vehicle Safety Standard.

포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발 (Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die)

  • 이정민;김병민;강충길;조형호
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.