• Title/Summary/Keyword: Tube Angle

Search Result 464, Processing Time 0.026 seconds

Limit Loads for Circular Wall-Thinned Feeder Pipes Considering Bend Angle (굽힘각도를 고려한 원형 감육이 발생한 중수로 피더관의 한계하중)

  • Bae, Kyung-Dong;Je, Jin-Ho;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • In CANDU, feeder pipes supply heavy water to pressure tube and steam generator. Under service conditions, Flow-Accelerated Corrosion (FAC) produces local wall-thinning in the feeder pipes. The wall-thinning in these pipes affects the integrity of the piping system, as verified in previous research. This paper provides limit loads for wallthinned feeder pipes with $45^{\circ}$ and $60^{\circ}$ bend angles, and proposes an equation that predicts the limit loads for wallthinned feeder pipes with arbitrary bend angles. On the basis of finite element limit analyses, limit loads are obtained for wall-thinned feeder pipes under in-plane bending and internal pressure. There are two cases of in-plane bending: the in-plane closing direction and the in-plane opening direction. The material is considered the effect of the large deformation, so an elastic-perfectly-plastic material is assumed in the calculations.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

A Study on the Measurement of Aerodynamic Load of Aircraft Wing (항공기 날개의 공력하중 측정 기법 연구)

  • Kang, Seung-Hee;Lee, Jong-Geon;Lee, Seung-Soo;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2002
  • A study on the test, design and fabrication of wind tunnel model for measurement of air load distribution on wing surfaces is presented. 447 pressure taps are installed normal to the wing surfaces, and measured by PSI-8400 system using total 8 ESPs modules installed in the model. The test was performed at 50 m/sec constant speed in the low speed wind tunnel of Agency for Defense Development. Tests were carried out to determine effects of angle of attack, angle of sideslip and flap and stores for the load distribution of wing. The test results in this paper can be applied to the design optimization of structure and validation of computational fluid dynamics.

Seismic Performance of Built-up Concrete Filled Square Composite Column-to beam Connection with Through Diaphragm (관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Concrete filled tubular columns are widely used because the mutual reaction between the concrete and the tube improves strength and ductility of the columns. In an attempt to secure efficient use of members, built-up square columns featuring large width-thickness ratio and the use of thin steel plates are suggested in this study. In order to evaluate the structural characteristics and seismic performance of the column-to-beam connections of the new shape columns, cyclic load test of T-shaped column-to-beam connections was conducted with variables of diaphragms and concrete-filling. Moment-rotational angle relationship, dissipated energy and failure behavior were compared to evaluate stress transfer mechanism of the new shape built-up square column-to-beam connections associated with the variables.

An Evaluation on Bending Behaviors of Conical Composite Tubes for Bicycle Frames (자전거 프레임용 원추형 복합재 튜브의 굽힘 거동 분석)

  • Hwang, Sang-Kyun;Lee, Jung-Woo;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.358-362
    • /
    • 2016
  • Mechanical properties of static and dynamic behavior became important since the use of conical composite tubes in large structures such as aerospace, planes, and submarines as well as leisure goods such as bicycle frames, fishing rods, and golf shafts. In the past, the mechanical property prediction model for static behavior was studied using vibration, bending, and buckling. But there is a need to study how fiber orientation error affects mechanical properties of conical composite structure because the model assumes constant fiber orientation angle. The purpose of this study is to derive an equation that can predict the static behavior of conical composite tube for bicycle frames by considering fiber orientation error with respect to various design parameters.

Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region (저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Cho, Jin-Pyo;Oh, Wang-Kyu;Kim, Nae-Hyun;Youn, Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.

A Study on the Natural Energy Effect about the Address No.0 of Eco-friendly Architecture (생태건축 0번지의 자연에너지 효과에 관한 연구)

  • Lee, Si-Woong;Kang, Byung-Ho;Lim, Sang-Hoon;Choi, Seung-Hee
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.19-25
    • /
    • 2003
  • The Address No.0 of Eco-friendly Architecture offers unique experience for those who visit the place to envisage the future architecture where nature, human and building exist in harmony. It is open to the general public including the students of elementary and secondary schools. This house has been built to provide opportunities for the general public to experience eco-friendly architecture. It's floor area is 42 pyung($140m^2$) and the overall site has the area of 180 pyung($600m^2$). The following illustrates some of its prominent features : ${\bullet}$ Remodeling of a traditional Korean residence ${\bullet}$ Application of passive solar systems ${\bullet}$ Use of clerestory windows and daylighting systems(washroom and machine room) ${\bullet}$ Operation of solar water heaters with flat plate collectors ${\bullet}$ Construction of Biotop(small ecological world) ${\bullet}$ Water circulation for Biotop by photovoltaic(150W) and wind power(400W) generation ${\bullet}$ Outdoor hot water supplied by all-glass evacuated solar tubes. Through this Address No.0 of Eco-friendly Architeture conclusions are as followings. 1. The array of tubes in collector has the best nice in that the number of tube is nine and the tilt angle is the latitude $+20^{\circ}$. 2. The thermal performance of the all-glass solar vacuum collector was excellent than of the flate-plate solar collector. 3. The adaption of new small wind power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building hight.

A Study on Heat Transfer Characteristics of Helical Coiled Tube (나선코일의 열전달 특성에 관한 연구)

  • PARK, Jong-Un;CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

Evolution of spatial light modulator for high-definition digital holography

  • Choi, Ji Hun;Pi, Jae-Eun;Hwang, Chi-Young;Yang, Jong-Heon;Kim, Yong-Hae;Kim, Gi Heon;Kim, Hee-Ok;Choi, Kyunghee;Kim, Jinwoong;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Since the late 20th century, there has been rapid development in the display industry. Only 30 years ago, we used big cathode ray tube displays with poor resolution, but now most people use televisions or smartphones with very high-quality displays. People now want images that are more realistic, beyond the two-dimensional images that exist on the flat screen, and digital holography-one of the next-generation displaysis expected to meet that need. The most important parameter that determines the performance of a digital hologram is the pixel pitch. The smaller the pixel pitch, the higher the level of hologram implementation possible. In this study, we fabricated the world-smallest $3-{\mu}m$-pixel-pitch holographic backplane based on the spatial light modulator technology. This panel could display images with a viewing angle of more than $10^{\circ}$. Furthermore, a comparative study was conducted on the fabrication processes and the corresponding holographic results from the large to the small pixel-pitch panels.

Dose Reduction According to Geometric Parameters of Digital Cerebral Angiography (두개부 혈관 조영검사 시 기하학적 특성에 따른 선량 감소 방안)

  • Park, Chan Woo;Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.399-406
    • /
    • 2019
  • This study aims to find geometric parameters that the radiologist can change from time to time to reduce dose in angiography examinations. Depending on the geometric characteristics, the values calculated by effective dose were compared, while filming in fluoroscopy mode and Digital subtraction angiography, respectively. The study found that the lower the dose was in FPS mode, the lower the dose was reduced to 30-40%. Doses according to the X-ray angle were measured highest in AP View and lower as the angle went in the head direction. The greater the FOV, the higher the dose was 1.2-1.6 times, and the closer the distance between the X-ray tube and the table, the greater the dose was about 10%. Source-image intensifier distance (SID) get longer to 100 mm, dose of each fluoroscopy and Digital subtraction angiography increase up to 25-30%. In conclusion, various geometric characteristics in angiography examinations are parameters that can be applied by radiographers as frequently as possible, and appropriate geometric properties can be considered and applied in various situations, resulting in appropriate dose reduction.