• Title/Summary/Keyword: Tube 방향

Search Result 376, Processing Time 0.028 seconds

Change of PAE according to Detector Measurement Method (검출기 측정방법에 따른 PAE값의 변화)

  • Im, In-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.307-311
    • /
    • 2010
  • The aim of this study is to investigate PAE, as the result of the test of kVp accuracy, according to detector measurement method. Based on the indicated value of 70kVp, each distance between a focus and a kVp meter was 100cm, 80cm and 60cm and the angle of X-ray tube was set on $5^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ}$. Each indicated value, 60kVp, 70kVp, 80kVp, 90kVp and 100 kVp, was used compare Small focus with Large focus. As a result, PAE on the side of cathode was higher than it on the side of anode in the case of 100cm and PAE on the side of anode was higher in the case of 80cm and 60cm. The coefficient rate was stable both the side of cathode and anode in the case of 100cm and it was fluctuated in the case of 80cm and 60cm. PAE in the case of Small focus was higher than Large focus and it was disproportionate to an indicated value. Error rate was in inverse proportion to the indicated value.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Comparison of Heel Effect with Distance and Direction Change (거리와 방향 변화에 따른 힐이팩트 비교)

  • Kim, Hyung-Woo;Seok, Ji-Eun;Kang, Min-Yeong;Jo, Chan-Haeng;Jeon, Min-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.435-442
    • /
    • 2022
  • The heel effect creates a density difference in the X-ray images because the intensity of the anode and cathode side of the X-ray tube is not equal. The purpose of this study is to evaluate the density difference due to the heel effect by rotating the step wedge by 180 degrees and then changing the distance. After fixing the tube voltage and tube current to 72 kVp and 10 mAs, the forward and reverse directions were taken using a step wedge. At this time, the distance (80 cm ~ 130 cm) was taken at 10 cm intervals, and the density value was measured by setting the region of interest for each step of the step wedge through the M6 program. First, the difference in intensity between the anode and the cathode was confirmed through the radiation exposure test. In addition, when the distance (from 80 cm to 130 cm) was changed, the difference in density between the cathode and the anode decreased as the projection distance increased. As a result, images of uniform density can be obtained as the projection distance increases.

영구자석형 14 GHz ECR 이온원 개념설계

  • O, Byeong-Hun;In, Sang-Yeol;Lee, Gwang-Won;Seo, Chang-Seok;Jang, Dae-Sik;Jin, Jeong-Tae;Jeong, Seung-Ho;Hwang, Cheol-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.233-233
    • /
    • 2011
  • ECR 이온원을 가볍고 작게 하면서 운전을 단순화함으로써 유지보수를 최소화하는 것은 특히 의료용 중입자 가속기에서 매우 중요한 조건 중 하나가 된다. 탄소 다가 이온을 만들어내기 위한 의료용 중입자가속기의 이온원으로 영구자석형 ECR 이온원을 개념 설계하였다. 영구자석은 이온원 입출구에서 강력한 축방향 자장을 만들기 위한 솔레노이드 자석 두 개와 반경방향 자장을 만들어 주기 6극 자석으로 구성된다. 또한 축방향 자장 흐름을 효과적으로 만들어주기 위한 두 개의 링 형 자석을 추가하여 자장의 강도를 높였다. 그러나 영구자석으로만 만들어진 자장 구조는 제작과 동시에 고정이 되어 수정이 불가능하기 때문에 제작 후 매우 제한적인 운전영역을 가질 뿐 만 아니라 최악의 경우에는 운전조건을 찾지 못하는 경우도 발생할 수 있다. 따라서 본 설계에서는 그림과 같이 두 개의 작은 보조 솔레노이드 전자석을 추가하여, 최소한의 운전조건으로 ECR 이온원의 공명영역을 결정하는 최소 자장의 구조뿐만 아니라 축방향 자장의 세기도 각각 능동적으로 제어할 수 있도록 하였다. 또한 마이크로파원으로는 TWT (Traveling Wave Tube)를 사용하여 10 GHz에서 14 GHz 까지 다양한 주파수에서 운전이 가능할 수 있도록 설계하였다. 이러한 설계를 통하여 다양한 운전조건을 가질 수 있는 안정된 ECR 이온원을 부피가 작으면서도 유지보수를 최소화하는 구조로 만들 수 있으며, 본 이온원은 탄소 다가 이온을 만들어내기 위한 목적뿐 만 아니라 다양한 중이온을 작은 규모로 만들어내기 위한 장치에서도 사용될 수 있다.

  • PDF

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.

Evaluation for Performance of a Military Radiation Detecter PDR-1K : Focused on Dependence of Angular and Energy (군사용 방사선 계측기 PDR-1K 반응도 평가 : 방향 및 에너지 의존성을 중심으로)

  • Park, Wonseok;Choi, Junhyuk;Jung, Doyoung;Kim, Jango;Min, Byungin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.300-305
    • /
    • 2017
  • In this paper, we performed a evaluation for angular and energy dependence of military radiation detector PDR-1K. Its measuring range is divided into two section, low and high, and each range has a GM tube separately owing to broad scale. We observed a change in relative angular reactivity within 0.928 ~ 1.188 in low range and within 0.743 ~ 1.000 in high range from $-90^{\circ}$ to $+90^{\circ}$. The evaluation for energy dependence appeared a relative reactivity within 0.892 ~ 1.000 above 83 keV. This means PDR-1K isn't possible to use below 83 keV of radiation energy. It is possible to provide response information to user and to increase reliability of radiation measurement through this paper.

Analysis of Thermal Control Performance of Variable Conductance Heat Pipe with Axial Grooves (축방향 그루브형 가변전열 히트파이프의 열제어 특성)

  • Park, Y.S.;Kim, D.E.;Byon, G.S.;Suh, J.S.;Lee, K.W.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1651-1656
    • /
    • 2003
  • The present study has been conducted to analytically investigate the thermal control performance of variable conductance heat pipe(YCHP) with axial grooves. The condenser port of the YCHP is occupied by a inert gas in which the concentration of gas is varied with the operation temperature and the heat transport capacity is thus varied with the operating temperature due to the variation of inert gas concentration. In this study, numerical evaluation for the thermal control of the YCHP with axial grooves is made from the 1st order diffusion model that considers the diffusive expansion of inert gas by concentration gradient. Ammonia is used as a working fluid and Nitrogen as a control gas in the Aluminum tube. As a result, the thermal performance of YCHP based on diffusion model has been compared with that of YCHP from flat front model. Additionally, it is found that the concentration of inert gas is distributed in the condenser region of YCHP with axial grooves.

  • PDF