• Title/Summary/Keyword: Ttricholomataceae

Search Result 1, Processing Time 0.012 seconds

Relationship between Higher Fungi Distribution and Climatic Factors in Naejangsan National Park (내장산국립공원의 고등균류 발생과 기후환경 요인과의 관계)

  • Jang, Seog-Ki;Kim, Sang-Wook
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.19-38
    • /
    • 2012
  • This study was conducted to investigate the diversity of higher fungi and relationship between higher fungi and climatic factors in Naejangsan National Park from April 2004 to October 2010. The obtained results from investigation were as follows. The higher fungi were classified into 48 families, 158 genera and 451 species in Basidiomycotina, 13 families, 26 genera and 39 species in Ascomycotina, and 4 families, 7 genera and 7 species in Myxomycetes, and most of them belonged to Hymenomycetidae in Basidiomycotina. Dominant species belonged to Ttricholomataceae (72 species), Russulaceae (39 species), Polyporaceae (41 species), Boletaceae (40 species), Cortinariaceae (35 species) and Amamtaceae (28 species). For the habitat environment, the ectomycorrhizal mushrooms were 38.8% (15 families, 36 genera and 193 species), litter decomposing and wood rotting fungi 39.4% (36 families, 107 genera and 196 species), grounding Fungi 19.9% (24 families, 51 genera and 99 species) and others 1.8% (3 families, 4 genera and 9 species). Monthly, most of higher fungi were found in July, August and September, and least found in November. In climatic conditions, most higher fungi were occurred in $23^{\circ}C$and above of mean temperature, $20^{\circ}C$and above of minimum temperature, and $29^{\circ}C$and above of maximum temperature. most of higher fungi were found in 73% and above of relative humidity and 200 mm and above of monthly precipitation. In case of ectomycorrhizal fungi like Amamtaceae, Boletaceae and Cortinariaceae, significance levels are not high in $32^{\circ}C$ and above of maximum temperature which mostly affects species occurrence than other climatic factors of mean and minimum temperature and monthly precipitation.