• Title/Summary/Keyword: Tsushima warm current

Search Result 213, Processing Time 0.023 seconds

Effects of Water Temperature Inversion on the Stratification Variation in October and December in the South Sea of Korea (한국 남해에서 10월과 12월의 수온역전현상이 성층변동에 미치는 영향)

  • Lee, Chung-Il;Koo, Do-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In order to illustrate the effects of water temperature inversion on the stratification variation in the South Sea of Korea, water temperature, salinity, and density measured in October and December 1999 by National Fisheries Research and Development Institute were reviewed. In October and December of 1999, temperature inversion occurred mainly between 25m and 75m, and in particular in depth of water, in December temperature inversion layer also was formed in the surface layer. In case of October and December, the Tsushima Warm Current (TWC), warm and saline water, was one of motors, and in December, influence of surface cold water was added Although northerly wind prevails in October and December, in October, expanding of the South Korean Coastal Waters (SKCW) towards offshore is not clear, but in December when wind speed is relatively greater than that in October and strength of the TWC become weak, the SKCW spreads towards offshore through the upper layer. Stratification variation was higher along the area where temperature inversion occurred.

  • PDF

The characteristics and structures of thermal front and warm eddy observed in the southeastern part of the east sea in 1995 (95년 한국동해에서의 수온전선과 와동류의 구조 및 특성조사)

  • Lim, Keun-Sik;Wang, Kap-Sik;Yun, Jae-Yul;Kim, Ki-Cheol;Kim, Young-Gyu;Kim, Kuh
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.120-135
    • /
    • 1996
  • The characteristics and fluctuations of structures and spatial distributions of thermal fronts and warm eddy in the Southeastern part of the East sea are discussed based on the data collected by the Naval Academy, Korea during Feb. 6-9, May 9-19 and Oct. 12-18, 1995. The thermal fronts existed very often at the sea off the Pohang-Ulsan, The generation of the thermal front is related with the development of the North Korea Cold Current. The warm eddy is located in the central part of the Ulleung basin where the local depth exceeds 1500m. This warm eddy is a major contributor to mass transport in the northern part of the East Sea. It is evident that knowledge of warm eddy is important in understanding the circulation in the western part of the East Sea.

  • PDF

Influences of the Sea Surface Wind on Current and Thermal Structures in the Southwestern Part of the East Sea of Korea (동해 남서해역의 해류 및 열구조에 미치는 해상풍의 영향)

  • NA Jung-Yul;PAENG Dong-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.15-28
    • /
    • 1992
  • Temporal variations of the path of the East Korea Warm Current(EKWC) which flows northward along the east coast of Korea were analysed to investigate whether the EKWC directly influences the existence of the so-called Warm Core in the Ulreung basin. From the 13 years(1975-1987) data of the Fisheries Research and Development Agency(FRDA), the $10^{\circ}C$ isotherm at the 100m depth and the depth of $2^{\circ}C$ isotherm and the temperature field at the 200m depth were used for identification of the path and the central position of the Warm Core. Sea surface winds computed from the surface pressure charts gave the monthly-averaged wind stress curl over the East Sea which was used for determination of the Sverdrup transport. And the mass transport stream functions were computed by use of the Sverdrup balance. The variations of the path show that the EKWC does not always have a fixed path and fluctuates with time. And the existence of the Warm Core is independent upon the presence of the EKWC even when the EKWC doesn't flow northward along the east coast of Korea. In view of the mass transport stream functions, the influences of the sea surface winds on the branching of the Tsushima Warm Currents and the presence of the EKWC were investigated. The presence of the EKWC may be hindered by the southward flow driven by the sea surface winds when the Tsushima currents are rather weak. A very weak correlation exists between the north-south component of the Sverdrup transport and the position of the Warm Core. However, a small but significant part of the southward transport across the latitudinal line of $38^{\circ}N$ indicates that cold water from the northern part of the East Sea may be driven and be forced to flow beneath the permanent thermocline in such a way that the thermal structure of the Warm Core and its position might be changed.

  • PDF

The Variations of Oceanic Conditions and the Distributions of Eggs and Larvae of Anchovy in the Southern Sea of Korea in Summer (하계 한국 남해의 해황 변동과 멸치 초기 생활기 분포특성)

  • Choo Hyo Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.1
    • /
    • pp.77-85
    • /
    • 2002
  • In the southern sea of Korea and the areas of Tsushima warm currents the relationship between the distributions of eggs and larvae of anchovy (Engraulis japonica) and oceanic conditions was examined on July and August 1997, The south Korean coastal waters, the water temperature of below $20\~23^{\circ}$ and the salinity of above 33.0 (PSU), the mixed waters between the south Korean coastal waters and the Tsushima warm currents, $21\~25^{\circ}$ and $32.0\~32.5$ and the Tsushima warm currents, above $26^{\circ}$ and below 31.5 were distributed at the surface layer. The Tsushima warm currents were distributed at the northeast of Jeju Is. and off the southern sea of Korea. As an appearance of warm streamer, the mixed waters were intruded into the coastal areas of Komun Is.$\~$Sori Is. and Sori Is.$\~$Yokji Is.. Approximate paths of surface water by the drift card experiments were similar with the intrusions of the warm water identified from the water temperature and salinity distributions. The distributions of chlorophyll concentration were consistent with the distributions of water temperature and salinity, Anchovy eggs and larvae were mostly distributed at Komun Is., Yokji Is, and the southwest of Koie Is. where chlorophyll concentrations were high and cyclonic circulations by the warm water intrusions (warm streamers) were formed.

Relationship between the Distribution of Water Masses and that of Demersal Fishes in the East China Sea in Spring

  • Cho Kyu Dae;Kim Hee Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.14-22
    • /
    • 2000
  • The relationship between the distribution of demersal fishes and that of the water masses was examined by using the catches data and hydrographic data in the Yellow Sea and the East China Sea on May 13-19, 1996 and May 10-17, 1997. During the study period, the dominant fish species were Cleisthenes pinetorum herzinsteini, Lophiomus setigerus and Pseudosciaena polyactis. These three low temperature water species accounted for $21-24\%$ of the total catches. The percentage of the low temperature water species was high in the Yellow Sea and the coastal area on the continental shelf of the East China Sea but was low in the vincinity of Kyushu during the study period. In the East China Sea, the isotherm of $15^{\circ}C$ at 50m, mid layer depth, was located more southeast in 1996 than in 1997. The bottom water temperature was about it lower in 1996 than in 1997. The direction of the detided current on the continental shelf of the East China Sea was southward in 1996 and northward in 1997. Yellow Sea Bottom Cold Water (YSBCW) strongly expanded to south in 1996 when the northward current was weak. But, Tsushima Warm Current (TSWC) strongly intruded into the continental shelf of the East China Sea in 1997. As YSBCW expanded strongly to south in 1996, the percentage of the low temperature water species relative to the total catches was high. But, TSWC strongly intruded and the percentage of low temperature water fishes was low in 1997.

  • PDF

THE VARIATION COEFFICIENT OF WATER TEMPERATURE AND SALINITY IN THE SOUTHERN SEA OF KOREA (韓國 南海의 水溫과 분의 變動係數)

  • Kim, Bok-Kee
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.74-82
    • /
    • 1982
  • The study on the variation coefficient of water temperature and salinity was comducted during the year from 1968 to 1980 in the Southern Sea of Korea. The results obtaland from the study as followes; 1. The variation coefficient of water temperature and salinity wewe large either at the front area or the thermocline and malocline area. 2. The variation coefficient of water temperature was the largest at the time when the power was strong ty each water mass(The largest value in Tsushima and Yellow Sea Warm Current area was occurred at the 50m layer in the Summer, and that in the South Korean Coastal Water area and the Southern Part of Yellow Sea was at all layer in the Winter). 3. The variation coefficient of salinity was the largest at the surface layer in warm current area that was influenced by the low salinity of the East China Coastal Water in the Summer ,and that of salinity in the South Korean Coastal Water area and Soutern Part of Yellow Sea was nearly half of the value of the warm current area.

  • PDF

Seasonal Variation of Phytoplankton Assemblages Related to Surface Water Mass in the Eastern Part of the South Sea in Korea (남해동부해역의 표층 수괴 변화에 따른 환경요인과 식물플랑크톤 군집의 계절적 변화)

  • Jang, Pung-Guk;Hyun, Bonggil;Cha, Hyung-Gon;Chung, Han-Sik;Jang, Min-Chul;Shin, Kyoungsoon
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.157-170
    • /
    • 2013
  • We investigated the seasonal succession of phytoplankton assemblages in the eastern part of the South Sea of Korea in relation to surface water masses. The study areas are under the direct influence of the Tsushima Warm Current (TCW) throughout the whole year, with its strength known to be seasonally variable. The region is also influenced by coastal waters (CW) driven from the South Sea of Korea and East China Sea, particularly in summer, as indicated by low salinity in the surface water. Nutrient property of the TCW can reveals whether the origin of the TCW is the nutrient-rich Kuroshio Current or the oligotropic Taiwan Warm Current. Surface chlorophyll-a (Chl-a) concentrations displayed a large seasonal variation for all stations, with high values found in spring and autumn and low values in summer and winter. At station M (offshore) and P (intermediate location between M and R), Chl-a concentrations in October were higher than those in March, when spring bloom normally occurs. This may be related to deeper mixed layer depths in October. Diatoms dominated under conditions of high nutrient supply in which Chaetoceros spp. and Skeletonema costatum-like spp. were abundant. S. costatum-like spp. dominated at stations R (onshore station) and P in December when there was greater nutrient supply, especially of phosphate. Flagellates and dinoflagellates dominated at all three stations after diatoms blooms. Dominant species were Scrippsiella trochoid in April and Ceratium furca in October at station R, and Gyrodinium spp. and Gymnodinium spp. at station M during summer, when the effect of the oligotropic Taiwan Warm Current and the oligotropic coastal water from East China Sea were strong. Redundancy analysis showed clear seasonal successions in the phytoplankton community and environmental conditions, in which both principal components 1 and 2 accounted for 69.6% of total variance. Our results suggested that environmental conditions seemed to be determined by the origin of the TCW and the relative seasonal strength of the water masses of the TCW and CW, which may affect phytoplankton growth and compositions in the study area.

In Summer, the Origin of Tsushima Warm Current Water in the Western Channel of the Korea Strait-2 on the Water in the Middle Layer (하계 대한해협 서수도에 유입되는 Tsushima난류수의 기원-2 중층수에 대한 고찰)

  • 윤종휘
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.61-76
    • /
    • 1990
  • It was found that three different water masses were vertically situated in the western channel of the Korea Strait in summer. Of these water masses , the origin and inflow path of the middle water were discussed and estimated by comparing with water characteristics of neighbouring sea. As a result, (1) the middle water is formed on the continental shelf in the East China Sea by the mixing of the Kuroshio Water and Chinese Continental Coastal Water, (2) the middle water seems intruded through the sea around 127 E west off Kyushu Island and east off Cheju the Island.

  • PDF

Water Mass Stability of Deep Ocean Water in the East Sea (동해 심층수의 수괴 안정성)

  • Moon D.S.;Jung D.H.;Shin P.K.;Kim H.J.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.285-289
    • /
    • 2004
  • Oceanographic observation and qualitative analysis for deep ocean water in the East Sea were carried out from January 2003 to January 2004, in order to understand the characteristics of deep sea water in the East Sea. Temporal and spatial variation of water masses were discussed from survey of the study area including the coastal sea of Kwangwon province in where the polar front mixing cold and warm water masses were formed. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW) (2) Tsushima Surface water (TSW) (3) Tsushima Middle Water (TMW) (4) North Korea Cold Water (NKCW) and (5) East Sea Proper Water (ESPW). In winter, surface water in coastal sea of Kwangwaan Kosung region were dominated by North Korean Cold Water (NKCW). As Tsushima warm current were enforced in summer, various water masses were vertically emerged in study area, in order of TSW, TMW, NKCW and ESPW. It is highly possible that the LSSW which occurred at surface water of september is originated from influx of fresh water due to the seasonal rainy spell. Nevertheless water masses existed within surface water were seasonally varied, water quality characteristics of East Sea Proper Water (ESPW) under 300 m did not changed all the seasons of the year.

  • PDF