• Title/Summary/Keyword: Tsushima fault

Search Result 2, Processing Time 0.015 seconds

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF