• Title/Summary/Keyword: Tsushima Current region

Search Result 72, Processing Time 0.025 seconds

Seasonal Volume Transport Variation and Origin of the Tsushima Warm Current

  • You, Sung-Hyup;Yoon, Jong-Hwan
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • A model of the current and seasonal volume transport in the East China Sea was used to investigate the origin of the Tsushima Warm Current (TSWC). The modeled volume transport field suggested that the current field west of Kyushu ($30^{\circ}-32^{\circ}N$) was divided into two regions, R1 and R2, according to the bottom depth. R1 consisted of the Taiwan Warm Current (TWWC) region and the mixed Kuroshio-TWWC (MKT) water region, while R2 was the modified Kuroshio water (MKW) region west of Kyushu. The MKW branched from the Kuroshio and flowed into the Korea/Tsushima Straits through the Cheju-Kyushu Strait, contributing 41% of the annual mean volume transport of the TSWC. The TWWC and MKT water flowed into the Korea/Tsushima Straits through the Cheju-Kyushu and Cheju Straits, contributing 32% and 27% of the volume transport, respectively. The maximum volume transport of the MKW was 53% of the total volume transport of the TSWC in November, while the maximum volume transport of the water in the R1 region through the Cheju-Kyushu Strait was 41% in July. Hence, there were two peaks per year of volume transport in the TSWC.

On the Origin of the Tsushima Current Water

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.85-91
    • /
    • 1971
  • The origin of the Tsushima Current water was investigated with a discussion on the western North Pacific Central Water. The Tsushima Current water is formed by the mixing of the Kuroshio surface water and the East China Sea water. The area where the mixing takes place remarkably is found to be the marginal region of the continental shelf of the East China Sea at the depth from 100 to 200 meters.

  • PDF

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

Variation of Sound Speed in the Tsushima Warm Current Region of the East Sea (동해의 쓰시마난류 분포역에서 음속의 변동)

  • LEE Chung Il;CHO Kyu Dae;KIM Sang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.170-177
    • /
    • 2003
  • This study is to analyze the influence of the Tsushima Warm Current (TWC) on the variation of sound speed in the southern part of the East Sea. Sound speed is calculated by method of Chen and Millero (1977:, based on the CTD data measured in June of 1996. Sound speed in the central part of the TWC is about $45ms^{-1}$ more fast than that in the other regions without the TWC. Sound speed minimum layer (SML) in the TWC region exists between loom and 341 m, while it exists between 260m and 290m in the non-TWC region. SML distributes along the path of TWC over continental shelf in the coastal waters of Japan.

The oceanic condition of the Tsushima Warm Current region the southern part of the East Sea (Sea of Japan) In June, 1996

  • Lee Chung Il;Cho Kyu Dae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.167-174
    • /
    • 2003
  • Oceanic conditions of the Tsushirm Wann Current (1WC) region in the southern area if the East Sea (the Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in $19\%$ and in this period, two branch of the TWC exist and the first branch of the TWC flows inshore if the Japanese coastal region compared to tfr1t in the other years, especially in the sfr1llower water layer at less th:1n about 2mm. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf zone in the Japanese coastal region and offshore and identified by geostrophic calculation Intrusion if the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt- Vaisala frequency.

  • PDF

Some High-Frequency Variability of Currents Obtained by "GeoDrifters" in the Tsushima Current Region

  • Seung, Young Ho;Park, Jong Jin;Kwon, Young-Yeon;Kim, Sung-Joon;Kim, Hong-Sun;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • The "GeoDrifter" is a newly-developed surface drifter with high temporal resolution. It is the first time that high-frequency drifters have been deployed in the East/Japan Sea. The purpose of this study is to introduce the phenomena experienced by these drifters flowing along with the Tsushima Current across the East/Japan Sea, focusing on high-frequency variability, and to discuss them in comparison with previous observations. The observed basin-scale circulation of the Tsushima Current generally coincides well with the known schematic circulation. The GeoDrifter trajectories also show inertial oscillations almost everywhere in the oceanic regions of the East/Japan Sea, strong semi-diurnal tidal currents in the western part of Korea Strait, diurnal currents much stronger than semi-diurnal currents in the upstream region of the Nearshore Branch off the Japanese coast, and many warm eddies in the Yamato Basin, all comparable to the observational results reported in the previous studies. An interesting point is that the semi-diurnal tidal currents undergo a great spatial variation in the western part of the Korea Strait. The observed features that cannot be explained are, among others, strong counter-clockwise motions with oscillating period about 51 hours appearing in the upstream region of the Nearshore Branch off the Japanese coast and the different tidal behaviors between upstream and downstream regions of the latter.

The Oceanic Condition of the Tsushima Warm Current Region in the Southern Part of the East Sea (Sea of Japan) in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae;Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • Oceanic conditions of the Tsushima Warm Current (TWC) region in the southern area of the East Sea (Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in 1996 and in this period, two branches of the TWC exist and the first branch of the TWC flows inshore of the Japanese coastal region compared to that in the other years, especially in the shallower water layer at depth less than about 200 m. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf in the Japanese coastal region and offshore and identified by geostrophic calculation. Intrusion of the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt­Vaisala frequency.

  • PDF

Effect of the Environmental Conditions on the Structure and Distribution of Pacific Saury in the Tsushima Warm Current Region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1137-1144
    • /
    • 2003
  • To provide evidence that the changes in oceanic environmental conditions are useful indices for predicting stock structure and distribution of the Pacific saury (Cololabis saira), the body length compositions and catch per unit fishing effort were examined in relation to the sea surface temperature(SST) anomalies in the Tsushima Warm Current(TWC) region. The size of the fish became larger(smaller) than the average in the same size category during the season of higher SST(lower SST) as opposed to the normal SST. The year-to-year changes in body size caused by the changes in the environmental conditions led the stock to be homogeneous during the period of high stock level from the late 1950s to early 1970s and in the 1990s. The changes in body size manifested by higher(lower) occurrence rates of larger (smaller) sized groups in relation to temperature anomalies suggest that the changes in the environmental conditions affect the distribution and the structure of the stock in the TWC region. Therefore, if the SST anomaly derived from satellite data is large enough in the early spring months(Mar. or Apr.), it is possible to predict whether or not sea temperature will be favorable for large sized groups of saury at normal or slightly earlier time of commencement of the fishery in spring(Apr.∼June).

Comparison of nonlinear 1$1/2$-layer and 2$1/2$-layer numerical models with strong offshore winds and the Tsushima Current in the East Sea

  • Kim, Soon-Young;Lee, Hyong-Sun;Dughong Min;Yoon, Hong-Joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 1999
  • According to numerical experiments, the Sokcho Eddy is produced at $37 5~39.0^{\circ}N$ by strong offshore winds, whereas the Ulleung Eddy is produced at $35~37^{\circ}N$ by an inflow variation of the Tsushima Current. These locations compare well with visual observations. The nonlinear 1$1/2$-layer model showed that most of the East Korea Warm Current (EKWC) driven by the Tsushima Current form the Ulleung Eddy that is larger and stronger than the Sokcho Eddy. In contrast, the nonlinear 2$1/2$-layer model showed that most of the EKWC travels further northward due to a strong subsurface current, thereby enhancing the Sokcho Eddy making it larger and stronger than the Ulleung Eddy. The Sokcho Eddy is also produced relatively offshore due to an eastward subsurface current in the frontal region. Using the 1$1/2$-layer model, when the mass of the Tsushima Current decreases, the two eddies are weakened and produce a circular shape. In the 2$1/2$-layer model the EKWC pushes the Ulleung Eddy northward after 330 days, next the Sokcho and Ulleung eddies begin to interact with each other, and then after 360 days the Ulleung Eddy finally disappears absorbed by the relatively stronger Sokcho Eddy. This behavior compares favorably with other visual observations.

  • PDF

The Maritime Geography of Korea Strait: Suggested Nomenclature and Cartographic Boundaries Derived from a Review of Historical and Contemporary Maps (국제학술지, 지도, 문서에 나타난 대한해협 해양지명과 경계에 대한 인식 변화)

  • DO-SEONG BYUN;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.2
    • /
    • pp.63-93
    • /
    • 2023
  • This study aims to examine the history of naming the strait between the Yellow and East China Seas and the East Sea to suggest a consistent nomenclature and to demarcate the geographic region of the strait. Although the strait is internationally known as 'Korea Strait', it is commonly referred to as the 'South Sea' in Korean common usage. This review ultimately recommends the use of 'Korea Strait' as an appropriate geographical name for this area. To support this recommendation, the historical boundaries typically assigned to the Korea Strait were investigated. We also analyzed the evolution of geographical labels assigned to Korea Strait and to the Western and Eastern Channels (labels given to the two maritime areas surrounding Tsushima). Resources for this analysis included historic maps and charts, International Hydrographic Organization Special Publications (S-23), and maps published in the Ocean Science Journal (OSJ) and Journal of Oceanography (JO), which are two international journals representing Korean and Japanese sources, respectively, from 2005 to 2021. In these two international journals, the most frequently used names assigned to the strait of interest were Korea Strait (appearing 42.9% of OSJ maps, and 7.5% of JO maps), and Tsushima Strait (appearing 60.4% of JO maps, and 0% of OSJ maps). Other names were South Sea and Korea Strait/Tsushima Strait. On maps in the two reviewed journals, the boundaries of Korea Strait were defined explicitly or implicitly in five different ways: a broad region between the Yellow and East China Seas and Ulleung Basin (Type 1), the region between Ulleung Basin and Tsushima (Type 2), the western channel of the strait (Type 3-1), the eastern channel of the strait (Type 3-2), and both the western and eastern channels of the strait (Type 4). Overall, Type 1 was the most frequently used boundary, taking up 71.4% of OSJ and 60.4% of JO maps. Lastly, we suggest in this paper that the current flowing through Korea Strait from the East China Sea to the East Sea should be labeled the 'Korea Strait Warm Current' to indicate its full path through the strait. Currently, this current is internationally referred to as the 'Tsushima Warm Current', which does not link well to the commonly used geographic name of the strait.