• Title/Summary/Keyword: Tsunami inundation

Search Result 51, Processing Time 0.026 seconds

Tsunami Fragility Evaluation for Offsite Transformer in Nuclear Power Plants (지진해일에 의한 원자력발전소 소외변압기의 취약도 평가)

  • Kim, Min Kyu;Choi, In-Kil;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • In this study, a tsunami fragility methodology was determined for a probabilistic safety assessment(PSA) induced tsunami event in Nuclear Power Plant(NPP) site. For this purpose, a fragility evaluation method was presented using previous external PSA method. Failure mode and failure criteria about major safety related equipments and structures were determined. Finally, a tsunami fragility assessment was performed for offsite transformer in NPP site. For the fragility evaluation, structural failure like overturning and sliding and functional failure induced by inundation. Through this study, it can be concluded that a functional failure according to inundation height was governed total probability of failure of offsite transformer in NPP.

Computation of a Tsunami at Mindoro, Philippine in 1994 (1994년 필리핀 민도로섬의 쓰나미 산정)

  • Choi, Byung-Ho;Kim, Duk-Gu;Roh, Sang-Jun;Lee, Ho-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.140-154
    • /
    • 1997
  • On November 15, 1994 at 03:17 local time, an earthquake of surface magnitude (M$_{s}$) 7.0 occurred on the northern coast of the Mindoro in Philippine. A major tsunami was generated by this earthquake, extremely large tsunami waves engulfed the Mindoro and the Verde islands. This tsunami caused tremendous casualities and damage. The tsunami propagated to the Luzon island and felt at the Batangas after 10 minutes. The present paper intends to understand the propagation and inundation this tsunami with the aid of numerical computation model and computer graphic aided video animation.n.

  • PDF

Simulation of 1993 East Sea Tsunami by Parallel FEM Model (병렬 FEM 모형을 이용한 1993년 동해 지진해일 시뮬레이션)

  • Hong, Sung-Jin;Choi, Byung-Ho;Pelinovsky, Efim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.35-45
    • /
    • 2006
  • The simulation of tsunami using detailed bathymetry and topography is required to establish the countermeasure of disaster mitigation and the tsunami hazard map. In this study, a simulation of the 1993 tsunami event in the East Sea using parallel finite element model, which is possible to simulate with suitable accuracy by the Beowulf parallel computation method, is performed to produce detailed features of coastal inundation. Results of simulation are compared with measured data. The evolution of statistic distribution of tsunami heights is studied numerically and the distribution functions of tsunami heights show a tendency to the log-normal curve along coastal area.

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

Effects on the Jeju Island of Tsunamis Caused by Triple Interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan (일본 태평양 연안의 Tokai, Tonankai 및 Nankai의 3연동지진에 의한 지진해일이 제주도 연안에 미치는 영향)

  • Lee, Kwang-Ho;Kim, Min-Ji;Kawasaki, Koji;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • This study proposed a two-dimensional horizontal numerical model based on the nonlinear shallow water wave equations to simulate tsunami propagation and coastal inundation. We numerically investigated the possible impacts of tsunami caused by the triple interlocked Tokai, Tonankai and Nankai Earthquakes on the Jeju coastal areas, using the proposed model. The simultaneous Tokai, Tonankai and Nankai Earthquakes were created a virtual tsunami model of an M9.0 earthquake. In numerical analysis, a grid nesting method for the local grid refinement in shallow coastal regions was employed to sufficiently reproduce the shoaling effects. The numerical model was carefully validated through comparisons with the data collected during the tsunami events by 2011 East Japan Earthquake and 1983 central East Sea Earthquake (Nihonkai Chubu Earthquake). Tsunami propagation triggered by the combined Tokai, Tonanakai and Nankai, Earthquakes was simulated for 10 hours to sufficiently consider the effects of tsunami in the coastal areas of Jeju Island. The numerical results revealed that water level fluctuation in tsunami propagation is greatly influenced by water-depth change, refraction, diffraction and reflection. In addition, the maximum tsunami height numerically estimated in the coastal areas of Jeju Island was about 1.6 m at Sagye port.

Analysis of Tsunami Resonance and Impact in Coastal Waters

  • Lee, Joong-Woo;Kim, Kyu-Kwang;Yamazaki, Yoshiki;Cheung, Kwok Fai;Yamanaka, Ryoichi
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.755-763
    • /
    • 2011
  • Recently, extreme tsunami waves generated by submarine earthquake have caused tremendous damages to the coastal cities and ports. Strong seiche oscillations and runups are observed in specific sea areas around the world. Although no frequent impacts to the coast of Korean peninsula, there exist some important events in the east of Korea in the past. This study focuses on two historical events and recalculate with different fault and rupture mechanism for prediction considering the recent trend of submarine earthquake. The present study of the 1983 Akita tsunamis demonstrates the multi-scale resonance along continental coasts. Together with the Nankai tsunami for inland sea, we have confirmed the inland sea resonance surrounded by islands in defining the impact along the coast. Coherence and wavelet analyses for deducing a predominant period and time frequency are useful in reasoning the inundation. The resonance modes, which are largely independent of the tsunami source, allow identification of at-risk communities and infrastructure for mitigation of tsunami hazards. Furthermore, understanding of the resonance and the predicted runups for the site of power plant and industrial complex in the east coast of Korea would allow better preparation for the future disasters.

A Unity-based Simulator for Tsunami Evacuation with DEVS Agent Model and Cellular Automata (DEVS 에이전트 모델과 셀 오토마타를 사용한 유니티엔진 기반의 지진해일 대피 시뮬레이터 개발)

  • Lee, Dong Hun;Kim, Dong Min;Joo, Jun Mo;Joo, Jae Woo;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.772-783
    • /
    • 2020
  • Tsunami is a frightful natural disaster that causes severe damages worldwide. To minimize the damage, South Korea has built a tsunami warning system and designated evacuation sites in the east and south coasts. However, such countermeasures have not been verified whether they are adequate to minimize casualties since tsunami rarely occurs in South Korea. Recently, due to increasing earthquakes in the west coast of Japan, the likelihood of South Korea entering the damage area of tsunami rises; thus, in this paper, we develops a simulator based on Unity game engine to simulate the evacuation from tsunami. In order to increase the fidelity of the simulation results, the simulator applies a tsunami simulation model that analyzes coastal inundation based on cellular automata. In addition, the objects included in tsunami evacuation, such as humans, are modeled as an agent model that determines the situation and acts itself, based on the discrete-event system specification (DEVS), a mathematical formalism for describing a discrete event system. The tsunami simulation model and agent models are integrated and visualized in the simulator using Unity game engine. As an example of the use of this simulator, we verify the existing tsunami evacuation site in Gwangalli Beach in Busan and suggest the optimal alternative site minimizing casualties.

Field survey of 1983 central East Sea Tsunami : Imwon Port (1983년 동해 중부 지진해일 현장조사 : 임원항)

  • Kim, Sung-Min;Lee, Seung-Oh;Choi, Moon-Kyu;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.97-105
    • /
    • 2007
  • This study has been focus to certify the run-up heights, losses of human lives and property damages due to the 1983 Central East Sea tsunami. We have conducted the interview with indigenous inhabitant and field surveying at the Imwon port, East sea in Korea in order to inquire into the state of things occurred during that period. It is also investigated how much well they are aware of the emergency action plan including the evacuation system. Base on the reliable interviews, we selected and surveyed 10 places at the Imwon port, where the historical maximum overflowing occurred due to the 1983 Central East Sea tsunami. The measured run-up heights are approximately $3.3m{\sim}4.0m$ at the selected 10 places and it is found that the sea water ran over the banks in Imwon stream about 700m upstream from the Imwon port. From this study we can suggest supplementing the present emergency action plan and supply the state-of-the-art inundation map.

Analysis Run-up of 1993 Hokkaido Nansei Oki Tsunami (1993년 북해도 남서 외해 지진해일 처오름 해석)

  • Kim Jae-Hong;Son Dea-Hee;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1063-1067
    • /
    • 2005
  • A second-order accuracy upwind scheme is used to investigate the run-up heights of tsunamis in the East Sea and the predicted results are compared with field observed data and results of a first-order accuracy upwind scheme, In the numerical model, the governing equations solved by the finite difference scheme are the linear shallow-water equations in deep water and nonlinear shallow-water equations in shallow water The target events is 1993 Hokktaido Nansei Oki Tsunami. The predicted results represent reasonably the run-up heights of tsunamis in the East Sea. And, The results of simulation is used to design inundation map.

  • PDF