• Title/Summary/Keyword: Tsai-Wu failure index

Search Result 16, Processing Time 0.017 seconds

Optimization of hybrid composite plates using Tsai-Wu Criteria

  • Mehmet Hanifi Dogru;Ibrahim Gov;Eyup Yeter;Kursad Gov
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • In this study, previously developed algorithm is used for Optimization of hybrid composite plates using Tsai-Wu criteria. For the stress-based Design Optimization problems, Von-Mises stress uses as design variable for isotropic materials. Maximum stress, maximum strain, Tsai Hill, and Tsai-Wu criteria are generally used to determine failure of composite materials. In this study, failure index value is used as design variable in the optimization algorithm and Tsai-Wu criteria is utilized to calculate this value. In the analyses, commonly used design domains according to different hybrid orientations are optimized and results are presented. When the optimization algorithm was applied, 50% material reduction was obtained without exceeding allowable failure index value.

Design of Cylindrical Composite Shell for Optimal Dimensions (최적 단면 치수를 가지는 복합재료 중공빔의 설계)

  • Chun Heong-Jae;Park Hyuk-Sung;Choi Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.219-226
    • /
    • 2005
  • In this study, the problem formulation and solution technique using genetic algorithms for design optimization of laminate composite cylindrical beam section are presented. The hollow cylindrical beams we usually used in the wheel chair. If the weight of wheel chair is reduced, it will lead to huge improvement in passenger's mobility and comfort. In this context, the replacement of steel by high performance and light weight composite material along with optimal design will be a good contribution in the process of weight reduction of a wheel chair. An artificial genetics approach for the design optimization of hollow cylindrical composite beam is presented. On applying the genetic algorithm, the optimal dimensions of hollow cylindrical composite beams which have equivalent rigidities to those of corresponding hollow cylindrical steel beams are obtained. Also structural analysis is conducted on the entire wheel chair structure incorporating Tsai-Wu failure criteria. The maximum Tsai-Wu failure criteria index is $0.192\times10^{-3}$ which is moth less than value of 1.00 indicating no failure is observed under excessive loading condition. It is found that the substitution of steel by composite material could reduce the weight of wheel chair up to 45%.

Convergence Study of Motorsports and Technology : Strength Analysis for the Design of CFRP Bucket Seat (모터스포츠와 기술 융합 연구 : CFRP 버킷 시트 설계를 위한 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.165-171
    • /
    • 2019
  • Engineering and Technology have been influencing a lot in the field of sports. Competitiveness, attributes of sports, have forced not only sports players but sports goods to enhance those performance. Particularly in the field of motorsports, the convergence of sports and technology has long been done to satisfy between performance and safety. In this study, strength analysis was carried with FEM to develop CFRP Laminate(Carbon Fiber Reinforced Plastic Laminate) bucket seat targeted to motorsports and car tuning industries and FIA($F\acute{e}d\acute{e}ration$ Internationale de l'Automobile) regulation was applied to design the racing seat and evaluate its strength. FEM modeling considered the attributes of composites was followed by strength evaluation based on Tsai-Wu failure index were done according to Lay-up sequence and layer numbers. The result showed that the lay-up sequence with stacking angle such as $[0^{\circ}/30^{\circ}/60^{\circ}/90^{\circ}/-30^{\circ}/-60^{\circ}]_4$ with 3mm form core was optimal selection in the field of weight and strength evaluation.

Stiffness and Strength Evaluation of the CFRP Display Wall mount Arm (CFRP 디스플레이 월마운트암의 강성과 구조강도의 평가)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.147-154
    • /
    • 2019
  • Recently as flat display panels are getting narrower, TV wall mounts also become slimmer for interior design issue. In this study CFRP(Carbon Fiber Reinforced Plastic) was used for TV wall mount to satisfy slim arm design along with enough strength and low weight. The 16 staking sequences was made with orthogonal array to reduce experimental cases. Strength analysis of the TV wall mount arm made of CFRP laminate was studied on condition of staking sequences using FEA(Finite Element Analysis) and stiffness and strength of those cases were evaluated using deflection and Tsai-Wu's Failure criterion. The result showed that [$-45^{\circ}/90^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}$] lay up case was suitable for the wall mount arm staking design from the criteria of deflection and Tsai-Wu's Failure Index.

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

Design of Composite Laminate Bicycle Wheel considering Stacking Sequence (적층각을 고려한 복합재료 라미네이트 자전거 휠의 설계)

  • Lee, Jin-Ah;Hong, Hyoung-Taek;Kang, Kyoung-Tak;Chun, Heoung-Jae
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.141-146
    • /
    • 2012
  • The strength design for the lightweight bicycle wheel made of the Carbon/Epoxy composite laminates has been discussed in this paper. For bicycle wheel design, lightness of the wheel is important. Also, it has to satisfy the required strength under specific loading cases. Two testing methods for the bicycle wheel, i.e. vertical and complex loadings, are adopted in this study. Because the strengths of composite wheel is different in relation to the stacking sequence and the number of plies, it is important to decide an appropriate stacking sequence and number of layers for the composite wheel. From the finite element analysis results, the most stable sequence orientation and number of layers are determined. The stacking sequence $[0]_{8n}$, $[90]_{8n}$, $[0/90]_{2ns}$, $[{\pm}45]_{2ns}$, $[0/{\pm}45/90]_{ns}$ (n=1,2,3,4)are performed for finite element analysis. From results, $[0/{\pm}45/90]_{3s}$ lay-up is a good selection for the composite bicycle wheel. Also, the weakest point and layer are found in this study.

Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car (카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

Industry-University Cooperation Research Activities Through Idea Factory (Optimized Modeling in Butterfly Valve Disk by Creative Selection in Material) (Idea Factory를 통한 산학 협력 연구 활동 (소재의 적절한 선정을 통한 버터플라이 밸브 디스크의 최적화 모델링))

  • Kim, Yun-Hae;Park, Chang-Wook;Bae, Chang-Won;Kim, Han-Sol;Jung, Min-Kyo
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.44-48
    • /
    • 2016
  • This research is one of the Industry-University cooperation in idea factory of Korea Maritime and Ocean University. Idea factory of Korea Maritime and Ocean University is trying to train creative talented students and discover ingenious ideas. The contents are consisted of the possibility for the replacement of a metal valve disk to composite valve disk in butterfly valve based on the diversification. Purpose in this study is to predict failure field by each fly by appling Tsai-Wu Failure Index.

Optimal Design of Cylindrically Laminated Composite Shells for Strength (강도를 고려한 원통형 복합재료 구조물의 최적설계)

  • Kim, Chang-Wan;Hwang, Un-Bong;Park, Hyeon-Cheol;Shin, Dae-Sik;Park, Ui-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.775-787
    • /
    • 1996
  • An optimization procedure is proposed for the design of cylindrically laminated composite shell having midplane symmetry and subjected to axial force, torsion and internal pressure. Tsai-Wu and Tsai-Hill failure criteria are taken as objective functions. The stacking sequence represents the design variable. The optimal design formulation based on state space method is adopted and solution proccedure is described with the emphasis on the method of calculations of the design sensitivities. A gradient projection algorithm is employed for the optimization process. Numerical results are presented for the several test problems.