• Title/Summary/Keyword: Tryptophan residue

Search Result 47, Processing Time 0.018 seconds

Effect of Substituted Residue 24 on Folding of Tryptophan Synthase $\alpha$ Subunit (트립토판 중합효소 $\alpha$ 소단위체의 폴딩에 미치는 24번 잔기 치환효과)

  • 박후휘;김종원;신혜자;임운기
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.146-152
    • /
    • 1999
  • In order to elucidate a role of residue 24 in the folding of tryptophan synthase $\alpha$ subunit, mutant proteins in which Thr 24 was replaced by Met, Ala, Ser, Leu or Lys were overexpressed in E. coli, and the extents of accumulated proteins as soluble or aggregated forms were examined. The mutant proteins with Met or Leu at residue 24 were predominantly accumulated as soluble forms as the native protein. On the other hand, mutant proteins with Ser, Ala or Lys at residue 24 were expressed as aggregated forms as well. This result suggests that residue 24 of tryptophan synthase $\alpha$ subunit may be implicated in the folding of this protein.

  • PDF

Unfolding Property of Residue 24-Substituted Tryptophan Synthase $\alpha$-Subunits (24번 잔기가 치환된 트립토판 중합효소 $\alpha$ 소단위체들의 구조풀림 성질)

  • 정지은;박후휘;신혜자;임운기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.733-736
    • /
    • 1999
  • The doubly altered mutant tryptophan synthase $\alpha$-subunits, in which Thr 24 was replaced by Ser, Leu or Lys in addition to F139W substitution, were purified. Urea-induced unfolding equilibrium curves of these proteins, monitored by fluorescence intensity of tryptophan, show that the alterations of residue 24 resulted in marked changes in folding properites, suggesting the importance of this residue in folding of this protein.

  • PDF

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • Hong, Joung-Woo;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Park, Jin-Seu;Kwon, Hyeok-Yil;Cho, Sung-Woo;Choi, Soo-Young
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Oligomerization State of the Plasma Membrane Proteolipid Apoprotein Purified from the Bovine Kidney, Probed by the Fluorescence Polarization

  • Chae, Quae;Nam, Sang-Rye
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.202-206
    • /
    • 1988
  • In order to investigate the oligomerization state of the plasma membrane proteolipid apoprotein purified from the bovine kidney, fluorescence polarization experiment was carried out in the two different solvent systems, i.e., water and organic solvent(chloroform-methanol). The molecular volumes of the proteins estimated from the Perrin equation, were to be 45,258$A^3$ and 17,608$A^3$ in water and organic solvent, respectively. These values indicate that a trimerization is possibly occurring in the aqueous environment. As an auxiliary experiment for the calculation of the molecular volume using Perrin equation, fluorescence quenching constants ($K_q$) with the quencher acrylamide and fluorescence lifetimes (${\tau}_F$) of the intrinsic fluorophore tryptophan residue were estimated in the two different solvent systems. $K_q$ in water was 18.21$M^{-1}$ and it was 46.24$M^{-1}$ in organic solvent. Fluorescence lifetimes of tryptophan residue were calculated to be 2.80 nsec. in water and 3.81 nsec. in organic solvent, respectively.

Chemical Modification of Residue of Lysine, Tryptophan, and Cysteine in Spinach Glycolate Oxidase

  • Lee, Duk-Gun;Cho, Nam-Jeong;Choi, Jung-Do
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 1996
  • Spinach glycolate oxidase was subjected to a series of chemical modifications aimed at identifying amino acid residues essential for catalytic activity. The oxidase was reversibly inactivated by treatment with pyridoxal 5'-phosphate (PLP). The inactivation by PLP was accompanied by the appearance of an absorption peak of around 430 nm, which was shifted to 325 nm upon reduction with $NaBH_4$. After reduction, the PLP-treated oxidase showed a fluorescence spectrum with a maximum of around 395 nm by exciting at 325 nm. The substrate-competitive inhibitors oxalate and oxaloacetate provided protection against inactivation of the oxidase by PLP. These results suggest that PLP inactivates the enzyme by fonning a Schiff base with lysyl residue(s) at an active site of the oxidase. The enzyme was also inactivated by tryptophan-specific reagent N-bromosuccinimide (NBS). However, competitive inhibitors oxalate and oxaloacetate could not protect the oxidase significantly against inactivation of the enzyme by NBS. The results implicate that the inactivation of the oxidase by NBS is not directly related to modification of the tryptophanyl residue at an active site of the enzyme. Treatments of the oxidase with cysteine-specific reagents iodoacetate, silver nitrate, and 5,5'-dithiobis-2-nitrobenzoic acid did not affect significantly the activity of the enzyme.

  • PDF

Bacillus subtilis 유래 Glycerol-3-phosphate Cytidylyltransferase의 화학적 수식

  • 박영서
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.173-177
    • /
    • 1997
  • Glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis was modified with various chemical modifiers to determine the active sites of the enzyme. Treatment of the enzyme with group-specific reagents diethylpyrocarbonate, N-bromosuccinimide, or carbodiimide resulted in complete loss of enzyme activity, which shows histidine, tryptophan, and glutamic acid or aspartic acid residues are at or near the active site. In each case, inactivation followed pseudo first-order kinetics. Inclusion of glycerol-3-phosphate and/or CTP prevented the inactivation, indicating the presence of tryptophan and glutamic acid or aspartic acid residues at the substrate binding site. Analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a two histidine residues, single tryptophan residue, and two glutamic acid or aspartic acid residues.

  • PDF

Chemical Modification of Porcine Brain myo-Inositol Monophosphate Phosphatase by N-bromosuccinimide

  • Lee, Byung-Ryong;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Ahn, Yoon-Kyung;Yoon, Byung-Hak;Kwon, Hyeok-Yil;Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.294-298
    • /
    • 1999
  • Myo-inositol monophosphate phosphatase is a key enzyme in the phosphoinositide cell-signaling system. Incubation of myo-inositol monophosphate phosphatase from porcine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $3.8{\times}10^3\;M^{-1}min^{-1}$. The time course of the reaction was significantly affected by the substrate myo-inositol-1-phosphate, which afforded complete protection against the loss of catalytic activity. Spectrophotometric studies indicated that about one oxindole group per molecule of enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of myo-inositol monophosphate phosphatase is modulated by the binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers (화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인)

  • Park Young-Seo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The purified xylanase from Bacillus alcalophilus AX2000 was modified with various chemical modifiers to determine amino acid residues in the active site of the enzyme. Treatment of the enzyme with group-specific reagents such as carbodiimide or N-bromosuccinimide resulted in complete loss of enzyme activity. These results suggested that these reagents reacted with glutamic acid or aspartic acid and tryptophan residues located at or near the active site. In each case, inactivation was performed by pseudo first-order kinetics. Inhibition of enzyme activity by carbodiimide and N-bromosuccinimide showed non-competitive and competitive inhibition type, respectively. Addition of xylan to the enzyme solution containing N-bromosuccinimide prevented the inactivation, indicating the presence of tryptophan at the substrate binding site. Analysis of kinetics for inactivation showed that the loss of enzyme activity was due to modification of two glutamic acid or aspartic acid residues and single tryptophan residue.