• Title/Summary/Keyword: Trunk angle

Search Result 258, Processing Time 0.022 seconds

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

Kinematical Analysis of Projection Factors to Record Difference dur ing Women's Javelin Throwing (여자 창던지기 시 기록 차이에 따른 투사요인의 운동학적 분석)

  • Park, Jae-Myoung;Yoon, Seok-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.457-467
    • /
    • 2010
  • This study intends to analyze the projection factors' difference on each record of women's javelin throwing. For this purpose, the research analyzed the best record and the lowest one of athletes in top 1~7 ranks respectively, who participated in 2009 Daegu Pre-Championship Meeting. For analyze kinematic factors, we analyzed their game photos mainly shot by 3 cameras installed in side places. The used analysis program was Kwon3D 3.1. Analysis variables were the projection velocity, angle, height, trunk lean angle, and supporting leg's knee angle. The results concluded as follows: Different record showed statistically significant differences(p<.05) in terms of horizontal velocity and resultant velocity. There were no statistically significant differences in the variables of projection angle, its height, trunk lean angle and knee angle of support leg. But for the analyzed results to each individual characteristics, the horizontal velocity, projection height, knee angle of support leg and trunk lean angle of release event appeared to have influence on record.

Kinematic Analysis of Head and Trunk Movements of Young Adults while Climbing Stairs or a Ramp

  • Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.21-28
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the kinematic adaptation of head and trunk to ascend stairs and a ramp. Subjects were healthy young adults. Three-dimensional kinematic patterns of head and trunk movements were examined during stair climbing and steeper ramp climbing. Methods: Fourteen young subjects with no history of chronic or acute musculoskeletal, cardiovascular or respiratory disorders took part in this experiment. Kinematic data were collected using a 6 camera Vicon system (Oxford Metrix, Oxford, England). Repeated measures ANOVA analyses were used to investigate the effect of gait mode on kinematics of the head and trunk. Results: The angle of the trunk while ascending stairs or a ramp was modified in three human planes (p<0.05). The angle of head and neck during the ascending of stairs or a ramp was not changed in the sagittal plane but was changed in the frontal and transverse planes (p<0.05). Conclusion: This study describes and discusses some basic kinematic mechanisms underlying the pattern of head and trunk changes during stair and ramp climbing and showed that postural adaptation of the head and trunk is necessary to maintain balance.

The Effects of Coordinative Locomotor Training with Elastic Bands on the Body Alignment of Elementary School Baseball Players (탄력밴드를 이용한 협응이동훈련이 초등학교 야구선수의 신체 정렬에 미치는 영향)

  • Park, Se-Ju;Park, Chi-Bok;Kim, Yong-Sung
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.411-419
    • /
    • 2019
  • Purpose: This study determined the effects of elastic bands in coordinative locomotor training on the body alignment of elementary school baseball players. Methods: Thirty subjects were recruited for this study and separated into two groups: the coordinative locomotor training group with elastic bands (n=15) and the non-training control group (n=15) were five times a week for eight. The trunk inclination, trunk imbalance, kyphotic angle and lordotic angle were used to evaluate body alignment. Results: The experimental group showed significant improvements in trunk inclination, trunk imbalance, kyphotic angle and lordotic angle (p<0.05). Conclusion: Coordinative locomotor training impacted postural alignment in elementary school baseball players.

Effects of the Trunk Stabilization Exercise Combine in the Musical Tempo on Lumbar Lordosis Angle, Muscle Activity and pain (음악 템포와 병행한 몸통안정화운동이 척주앞기울임각, 근활성도 및 통증에 미치는 영향)

  • Lee, Dongjin;Lee, Yeonseop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2018
  • Purpose : The purpose of this study was to examine the effects of the trunk stabilization exercise in the musical tempo on lumbar lordosis angle, muscle activity and pain. Methods : For the 30 people with lumbar lordosis angle legion and back pain, a random selection was made with MLSE (15) and LSE (15) to measure VAS, lumbar lordosis angle and Muscle Activity. Result : There were significant decreases in intra group comparisons to lumbar lordosis angle were seen in MLSE and LSE groups, and significant decreases in inter group comparisons in MLSE groups. significant decreases in intra group comparisons to VAS were seen in MLSE and LSE groups, and significant decreases in inter group comparisons in MLSE groups. Significant intra-group comparison of muscle activity, MLSE groups increases were rectus obdominis(right/left) and erector spinae muscle(right/left), LSE groups increases were erector spinae muscle(right/left), and significant increases in inter group comparisons rectus obdominis(right) and erector spinae muscle(left) in MLSE groups Conclusion : Based on the above findings, a program to restore the lumbar lordosis angle, and increase muscle strength should be developed at by applying the combine existing trunk stabilization physical therapy technique and musical tempo.

Reliability and Validity of Angle of Trunk Rotation Measurement Using Smartphone and 3D Printing Technology in Scoliosis

  • Geum-Dong Shin;Seong-gil Kim;Kyoung Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.6
    • /
    • pp.283-291
    • /
    • 2022
  • Purpose: The purpose of this study was to compare and analyze the method of measuring the angle of the trunk rotation using a smartphone with 3D smartphone holder compared to a scoliometer, which is a measuring tool used as a method for diagnosing scoliosis in scoliosis patients. Methods: Angle of trunk rotation was measured in 21 subjects diagnosed with scoliosis. scoliometer measurement method, a smartphone measurement method with a 3D smartphone holder, a smartphone blind measurement method with a 3D smartphone holder, a smartphone measurement method without a smartphone holder, a smartphone blind measurement method without a smartphone holder, and a total of five measurement methods were repeated three times for comparison and analysis. Results: The smartphone measurement method with a 3D smartphone holder has excellent intra-rater reliability of angle of trunk rotation (Rater A; ICC3, 2≥0.993, Rater B; ICC3, 2≥0.992). The smartphone blind measurement method with a 3D smartphone holder has excellent inter-rater reliability of angle of trunk rotation (ICC2, 2≥0.968). The scoliometer measurement method had the highest validity (r=0.976) with the smartphone measurement method with a 3D smartphone holder, and the blind measurement method without a smartphone holder had the lowest validity (r=0.886). Conclusion: These findings, the angle of trunk rotation measured by the smartphone measurement method with a 3D smartphone holder in scoliosis patients showed high reliability and validity compared to the scoliometer measurement method.

Isokinetic Evaluation of the Trunk Flexors and Extensors for the White Collar Workers in Adult Males (사무직근로자의 요추부 굴곡근 및 신전근의 등속성 근력평가 서울시 일부지역의 21세 $\sim$ 49세 남자직장인을 중심으로)

  • Oh, Seung-Kil;Choi, Byung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.1
    • /
    • pp.377-396
    • /
    • 2000
  • After warming-up exercise for 20 minutes, Isokinetic measurement of trunk strength for flexor and extensor was done by using Cybex 6000 TEF Unit on 91 healthy male white workers from 22years old to 49 years old, and compared each other. 20 repetitions of trunk extension-flexion were done at $120^{\circ}$/sec angular velocity. After resting for 1 minutes, Four repetitions at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec) were done with 30 seconds of resting interval between each angular velocity. The purpose of this study is to obtain the isokinetic normative strength values for trunk extensors and flexors, and is to know the correlation between age, height, weight of subjects and data from isokinetic trunk strength measurement, and is to provide a guideline for exercise program of male white collar workers The collected data were analyzed by ANOVA, Duncan's Multiple Range Test, and Pearson correlation coefficiency in PC-SAS program. The results obtained were as follow; 1. There is significant positive-correlation with the statistic value between weight and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec)(p<01), between height and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec) except peak torque of trunk flexor at $60^{\circ}$/sec(p<01). 2. There is nagitive-correlation between age and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec), there is significant differences with statistic value between age and peak torque of trunk extensor at $120^{\circ}$/sec(p<.01). 3. Mean peak torque and mean peak torque % by body weight of trunk extensor is 1.1 times higher values than trunk flexor at $60^{\circ}$/sec. 4. There is the increase in peak torque angle of trunk flexor with increasing of age, and the decrease in peak torque angle of trunk flexor with increasing of age at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec). there is significant differences with statistic value in peak torque angle of trunk flexor at $120^{\circ}$/sec(p<.01). 5. There is significant decrease in endurance ratio of trunk extensor with increasing of age at $120^{\circ}$/sec(p<.01). In conclusion, peak torque of trunk extensor is 1.1 times higher values than trunk flexor in healthy male white collar workers.

  • PDF

A Biomechanical Analysis of Judo's Kuzushi(balance-breaking) Motion (유도 팔방기울이기 동작의 생체역학적 특성 분석)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Kim, Tae-Whan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The purpose of this study was to biomechanical analysis Judo's Kuzushi throwing motion in order to increase the effectiveness of Nage-waja(throwing technique). The Tori was a Judo player with 18 years experience(4th degree) while the Uke was a player with 2 years experience(1st degree). The kinematic data was captured using the Vicon motion system (7 cameras) and the kinetics were recorded by force plates(2 AMTI). The following were the results; While leaning to the front the subject's trunk's angle was $14.5^{\circ}$, the lower limbs angle was $23.8^{\circ}$, knee angle was $179.6^{\circ}$ and the vertical reaction of the left leg was 325.42N(BW 0.34) and the right leg was 233.7N(BW 0.47). While leaning back the subject's trunk's angle was $11.3^{\circ}$, the lower limbs angle was $4.1^{\circ}$, knee angle was $1761^{\circ}$ and the vertical reaction of the left leg was 299.53N(BW 0.43) and the right leg was 441.7N(BW 0.64). While leaning to the left the subject's trunk's angle was $30.8^{\circ}$, the lower limbs angle was $2.7^{\circ}$, knee angle was $175.2^{\circ}$ and the vertical reaction of the left leg was 711N(BW 1.03) and the right leg was 9.2N(BW 0.01). While leaning to the right the subject's trunk's angle was $36.5^{\circ}$, the lower limbs angle was $10.4^{\circ}$, knee angle was $175.2^{\circ}$ and the vertical reaction of the left leg was 13.2N(BW 0.02) and the right leg was 694.7N(BW 1.01). While leaning to the left front corner the subject's trunk's angle was $19.8^{\circ}$ (front) and $15.1^{\circ}$ (left), the lower limbs angle was $17.8^{\circ}$ (front) and $2.4^{\circ}$ (left), knee angle was $177.8^{\circ}$ (front) and $173.9^{\circ}$(left), and the vertical reaction of the left leg was 547.4N(BW 0.8) and the right leg was 117.8N(BW 0.17). While leaning to the right front corner the subject's trunk's angle was $15.4^{\circ}$ (front) and $17.7^{\circ}$ (right), the lower limbs angle was $21.1^{\circ}$, (front) and $5.7^{\circ}$ (right), knee angle was $175.5^{\circ}$ (front) and $178.9^{\circ}$(right), and the vertical reaction of the left leg was 53N(BW 0.08) and the right leg was 622.4N(BW 09). While leaning to the left rear corner the subject's trunk's angle was $9.2^{\circ}$ (back) and $13.8^{\circ}$ (left), the lower limbs angle was $2^{\circ}$, (back) and $5.7^{\circ}$ (left), knee angle was $175.5^{\circ}$ (back) and $172.8^{\circ}$(left), and the vertical reaction of the left leg was 698.2N(BW 1.02) and the right leg was 49.6N(BW 0.07). While leaning to the right rear corner the subject's trunk's angle was $8.9^{\circ}$ (back) and $19.6^{\circ}$ (right), the lower limbs angle was ${0.6^{\circ}}_"$ (back) and $3.1^{\circ}$ (right), knee angle was $174.6^{\circ}$ (back) and $175.6^{\circ}$(right), and the vertical reaction of the left leg was 7.2N(BW 0.01) and the right leg was 749.4N(BW 1.09). It was observed that during the Judo motion Kuzushii the range of the COM varied from $26.5{\sim}39.9cm$. It was concluded that the upper body leaned further than the lower body as there was knee extension. There was high left leg reaction forces while leaning to the left and likewise for the right side. It was therefore deduced that the Kuzushi was a more effective throwing technique for the left side.

Immediate Effects of Maitland Transverse Movement on Pain, Trunk Flexion Movement and Cobb's Angle in Patient with Upper Thoracic Scoliosis

  • Moon, Ok Kon;Choi, Wan Suk;Kim, Nyeon Jun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1066-1070
    • /
    • 2016
  • The purpose of this article was to investigate the effects of Maitland's transverse movement on change of pain, trunk flexion movement and Cobb's angle in patient with upper thoracic scoliosis. The subject are 37 years old with chronic low back pain participated in this study and has no experience surgery within the last six months due to back pain. 10 set was applied 10 times on the T3-T5 applied the transverse movement with grade IV to each segment by skilled physical therapist. Transverse movement was applied convex toward the concave side. Pressure pain threshold was reduced from 4/10 to 2/10. Trunk flexion range that is the distance between the middle finger and floor was increase from 7.3cm to 2cm. Cobb's angle was decreased from degree 18 to 16. This result demonstrated that the Maitland's transverse movement was benefit to reduce the pain and Cobb's angle, and to increase the trunk flexion movement.

Effects of the Trunk and Neck Extensor Muscle Activity According to Leg Positionon in Bridging Exercise (교각운동에서 다리의 위치에 따른 목폄근의 활성도에 미치는 영향)

  • Cho, Hyun-Rae;Jung, Da-Eun;Chae, Jung-Byung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2014
  • PURPOSE: This study aims to determine the optimal knee joint angle and hip joint angle for minimizing the cervical muscle tension and maximizing the muscle activity of the trunk during the bridging exercise for trunk stabilization. METHODS: The bridging exercise in this study included seven forms of exercise: having a knee joint flexion angle of $120^{\circ}$, $90^{\circ}$, $60^{\circ}$, $45^{\circ}$ and hip joint abduction angle of $15^{\circ}$, $10^{\circ}$, $5^{\circ}$. The posture of the bridging exercise was as follows. To prevent the increase of hyper lumbar lordosis during the bridging exercise, the exercise was practiced after maintaining the lumbar neutral position through the pelvic posterior tilting exercise. RESULTS: The abduction angles did not result in statistically significant effects on the cervical erector, external oblique, rectus abdominis and erector spinae muscles. However, in relation to the knee joint angles, during the bridging exercise, statistically significant results were exhibited. CONCLUSION: The knee joint angle affected the muscle activity of the neck muscle. The greater the knee joint angle, the lower the load placed on the neck muscle. In contrast, the load increased as the knee joint angle decreased. In addition, the muscle activity of the neck muscle and trunk muscle increased as the knee joint angle decreased.