• Title/Summary/Keyword: Trunk Rehabilitation

Search Result 291, Processing Time 0.026 seconds

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

Changes of Muscle Activation Pattern of Trunk Muscles during Whole-body Tilts with and without Axial Rotation (전신 기울임 운동시 축 회전 유무에 따른 체간근 활성도 변화)

  • Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Bae, Tae-Soo;Mun, Mu-Seong;Park, Jong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.805-810
    • /
    • 2012
  • Determining of the exercise intensity is very important in terms of induction of low fatigue during exercise. Little information is available on the contraction level of the trunk muscles during whole body tilts with and without axial rotation. This study was to investigate the difference muscle activation level according to axial rotation. Twenty subjects were participated. The muscle activities of the five trunk muscles were bilaterally measured at eight axial rotation angles with 12 tilt angles along $15^{\circ}$ intervals. The results showed that tilt with $45^{\circ}$ axial rotation was more balanced in the same tilt angle and was maintained approximately level of 40% MVC at over $60^{\circ}$ tilt angle with respect to co-contraction of abdominal and back muscle. Lumbar stabilization exercise using whole body tilts would be more effective with axial rotation than without axial rotation in terms of muscle co-contraction.

The Assessment on Electromyography of Trunk Muscle according to Passive and Active Trunk Tilt Exercise of 3-D Dynamic Postural Balance Training System (3 차원 동적 자세균형 훈련기기의 능동/수동 체간 기울임에 따른 근 활성도 비교)

  • Shin, Sun Hye;Yu, Mi;Jeong, Gu Young;Yu, Chang Ho;Kim, Kyung;Jeong, Ho Choon;Kwon, Tae Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.331-339
    • /
    • 2013
  • The Interest in disease prevention and rehabilitation is increasing depending on increase of patients with spinal. This is being developed using the spine stabilization device is being studied. So far studies have only evaluated the effect on trunk stabilization exercises but analysis of human movement patterns for active movement and passive movement did not. We assessed the muscle activity of trunk and leg muscle during passive and active tilt mode on eight tilt directions at tilt angle of $30^{\circ}$ using 3-D dynamic postural balance training system. We performed experimental study on the muscular activities of trunk muscle about rectus abdominis, external obliques, latissimus dorsi, erector spinae, and leg muscle about rectus femoris, Biceps femoris, Tibialis Anterior, gastrocnemius. As a result, muscle activation was different depending on the direction of movement and pattern. The results indicate that various patterns of spinal stabilization exercise system could be applied to an effective training of chronic low back pain patients.

The Effect of Trunk Muscle Activity on Applied Normal Timing According to Angular Motion in PNF Patterns (PNF 패턴에서 각도에 따른 Normal Timing의 적용이 체간 근육활성에 미치는 영향)

  • Kim, Kyung-Hwan;Youn, Hye-Jin;Park, Sung-Hun;Lim, Jin-Woo
    • PNF and Movement
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2015
  • Purpose: The purpose of this study was to analyze the effect of normal timing according to angular motion in PNF patterns on electromyography (EMG) activity in rectus abdominis, internal oblique abdominal muscle, external oblique abdominal muscle, and erector spinae. Methods: Ten healthy adults volunteered to participate in this study. The participants were required to complete following two PNF extremity patterns; upper extremity extension- adduction-internal rotation pattern with $180^{\circ}$, $90^{\circ}$, $30^{\circ}$ and lower extremity flexion- adduction-external rotation pattern with $0^{\circ}$, $60^{\circ}$, $90^{\circ}$. A paired t-test was used to determine the influence of the two PNF patterns on muscle activity in each muscle. Descriptive statistics were used to determine the ratio of local muscle activity to global muscle activity. Results: In terms of their effect on applied normal timing, the upper and lower extremity pattern significantly affected the rectus abdominis, internal oblique, external oblique, and erector spinae (p < .05). The upper extremity pattern (at an extension angle of $30^{\circ}$) and the lower extremity pattern ((at a flexion angle of $90^{\circ}$) influenced the rectus abdominis, internal oblique, external oblique, and erector spinae (p < .05). Conclusion: The effect of the upper and lower extremity patterns on applied normal timing was significant in that these patterns increased trunk muscle activation. The upper extremity pattern (at an extension angle of $30^{\circ}$) and the lower extremity pattern (at a flexion angle of $90^{\circ}$) increased trunk muscle activation. Normal timing is required to increase trunk muscle strength and extremity movement.

The Immediate Effects of Neck and Trunk Stabilization Exercises on Balance and Gait in Chronic Stroke Patients

  • Choe, Yu-Won;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • PURPOSE: The purpose of this study was to identify the effects of neck stabilization exercise combined with trunk stabilization exercise on balance and gait function in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The experimental group subjects (n = 11) performed neck stabilization (15 min) and trunk stabilization (15 min) exercises, while the control group subjects (n = 11) performed trunk stabilization exercise only for 30 min. Before and after the intervention, the subjects underwent static balance and gait testing. RESULTS: The 95% confidence ellipse area, center of pressure (COP) path length, and COP average velocity were significantly lower in both groups after the intervention compared to before intervention (p < .05). The average stance force on the affected side increased significantly in both groups after the intervention (p < .05). The changes in the static balance variables were larger in the experimental group than in the control group. The cadence, gait velocity, and single leg support increased significantly in both groups after intervention (p < .05). The changes in the gait variables were larger in the experimental group than in the control group. CONCLUSION: Trunk stabilization is a beneficial intervention, but the combination of neck stabilization with trunk stabilization is a more effective method to increase the gait and static balance in chronic stroke patients.

The Effect of Wrist and Trunk Weight Loading using Sandbags on Gait in Chronic Stroke Patients (모래주머니를 이용한 팔목과 몸통의 무게 증가가 만성 뇌졸중 환자들의 보행에 미치는 영향)

  • Park, Sangheon;Lim, Hee Sung;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • Objective: This study aimed to determine the effect of wrist and trunk weight loading using sandbags in stroke patients in order to provide the quantitative data for enhancement of gait movement. Method: Twelve stroke patients, who have been diagnosed with hemiplegia over a year ago, were participated in this study. All subjects were asked to perform normal walking [N], wrist sandbag walking [W], wrist & trunk sandbag walking [WT], and both wrist sandbag walking [B] and both wrist & trunk sandbag walking [BT], respectively. Eight infrared cameras were used to collect the raw data. Gait parameters, arm swing, shoulder-pelvic kinematics, and lower extremity joint angle were calculated to examine the differences during walking. Results: As a result, there were no significant differences in the gait parameters, shoulder-pelvis, and lower extremities joint angles, but significant differences were found in the range of motion and the anteversion in arm swing. Conclusion: Wrist and trunk weight loading using sandbags affected the movement of the upper extremities only while it did not affect the movement of the lower extremities. It implies that it can reduce the risk of falling caused by a sudden movement change in lower extremities. In addition, the wrist and trunk weight loading using sandbags can induce changes in movement of the upper extremities independently and contribute to functional rehabilitation through resistance training.

The Effects of PNF Leg Flexion Patterns on EMG Activity of the Trunk (PNF 하지굴곡패턴운동이 체간근육 활성도에 미치는 영향)

  • Kim, Kyung-Hwan;Ki, Kyong-Il;Youn, Hye-Jin
    • PNF and Movement
    • /
    • v.9 no.3
    • /
    • pp.19-24
    • /
    • 2011
  • Purpose : The purpose of this study was to analyze the effect of PNF lower extremity flexion pattern on the eletromyographic (EMG) activity in rectus abdominis, internal oblique abdominal, external oblique abdominal, erector spinae. Methods : Twenty-six healthy adults volunteered to participate in this study. Subjects were required complete following two PNF lower extremity patterns; flexion-adduction-external rotation with knee flexion (D1) and flexion-abduction-internal rotation with knee flexion (D2). A paired t-test was used to determine the influence of the PNF two patterns on muscle activity for each muscle and descriptive statistics was used to determine local/global muscle ratio. Results : The D1 pattern was showed significant rectus abdominis (p<.05) and Median of internal oblique/rectus abdominis ratio was 2.23 and internal oblique/external oblique ratio was 1.53. The D2 pattern showed significant erector spinae (p<.05) and Median of internal oblique/rectus abdominis ratio was 3.06 and internal oblique/external oblique ratio was 1.72. Conclusion : The D1 pattern made rectus abdominis activation increase. The D2 pattern made erector spinae activation increase. As compared D1 and D2 pattern on trunk muscle activation, it's will be useful decision making for the trunk muscle strength and stabilization.

The Study on Relation of Obesity and Low Back Pain Based on Body Composition Using Segmental Bioelectrical Impedance Analysis and Isokinetic Trunk Muscle Strength (체성분 분석 변수와 요부 등속성 근력 측정을 근거로 한 비만과 요통의 관계)

  • Park, Ji-Hyun;An, Soon-Sun;Choi, Yong-Hun;Hong, Seo-Young;Heo, Dong-Seok;Yoon, Il-Ji
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.147-159
    • /
    • 2008
  • Objectives : In order to investigate the relation of body composition analysis and isokinetic trunk muscle strength for the screening test of low back pain. Methods : This study was carried out with the data from comprehensive medical testing. 75 subject aged 20-59 performed the segmental bioelectrical impedance analysis, isokinetic trunk muscle strength test and questionnaire. Then we analyzed the relationship of data. Results : Low back pain(LBP) prevalence in high obesity index(Body mass index(BMI), Percentage of Body Fat(PBF), Waist Hip Ratio(WHR)) group was higher than LBP prevalence in normal obesity index group(p<0.001). In LBP group, Extension Peak Torque(Ext.PT), Extension Peak Torque per Body Weight(Ext.PT/BW) were significantly lower than Non-LBP group(p<0.001). And 90% of LBP group indicated abnormal Extension-Flexion Ratio(E/F ratio)(1.0 < Normal E/F ratio <1.6). When it comes to analyze relation between obesity index and muscle strength, Ext.PT/BW was significantly decreased according to PBF, WHR score. And correlation coefficient in Flex.PT, Flex.PT/BW, Ext.PT, Ext.PT/BW and PBF showed decreasing function. Conclusions : Results from this investigation showed positive correlation between obesity and LBP prevalence. Decreased muscle strength and inbalanced E/F ratio were shown in LBP. Trunk muscle strength was changed according to body mass composition parameters. This results are expected to contribute to prevent and diagnose LBP by application the clinical index of body composition analysis.

Effect of Trunk Control Training on Labile Surface on Relative Impulse in the Persons with Stroke (불안정한 면에서의 체간 훈련이 뇌졸중 환자의 비례추진력에 미치는 영향)

  • Jang, Sang-Hun;Ann, Ji-Hyeson;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • Purpose: The present study was designed to investigate the effect of trunk control training on the labile surface on relative impulse and balance in stroke patients. Methods: A total of 21 participants were assigned to an experimental group (n=11) or a control group (n=10). In addition to conventional therapy, the experimental group received trunk control training on the swiss ball; 20 minutes, 4 times a week, for 8 weeks. Balance ability was evaluated by FRT (functional reaching test) and TUG (time up and go). In addition relative impulse in 6 areas of the foot (hallux, 1st metatarsal head, 2~3 metatasal head, 4~5 metatasal head, mid foot and heel) were measured using the F-scan system to evaluate locomotion ability during gait. Results: Significant differences in the relative impulse were observed in the areas of the 2~3 metatasal head during gait after exercise in both the control group and experimental group (p<0.05). Also, a significant increase was seen in the hallux after exercise in the experimental group (p<0.05), but no such significant increase was seen in the control group (p>0.05). Significant differences were observed in FRT and TUG in the experimental group but no such significant increase was observed in the control group (p>0.05). Conclusion: These results suggest that trunk control training on labile surface improves the balance in stroke patients and has a positive effect on locomotion ability.

Effect of IMU Sensor Based Trunk Stabilization Training on Muscle Activity and Thickness with Non-specific Chronic Low Back Pain (만성 허리통증 환자의 관성 센서 기반 허리 안정화 훈련이 몸통 근육 활성도와 두께에 미치는 영향)

  • Kim, Sang Hee;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • The purpose of this study was to present the IMU sensor based trunk stabilization exercise and to evaluate the changes in the muscle activity and thickness with non-specific low back pain patients (N=30). They were classified into two groups; lumbar stabilization exercise using IMU sensor (ILS), (n1=20) and general lumbar stabilization exercise (GLS), (n2=10). By comparing the difference between pre and post intervention via trunk muscle activity and muscle thickness, the significant differences were identified. Muscle activity was measured on external oblique (EO), internal oblique (IO), and multifidus (MF) by using surface electromyography (sEMG). Muslce thickness was measured on external oblique, internal oblique, transverse abdominis (TrA), and multifidus (MF) by using ultrasonography. sEMG activity was recorded at right side-bridge position. Each group performed the proposed lumbar stabilization exercise for 30 minutes a day, 5 times a week for 4 weeks. Trunk muscle activity was observed with a significant increase in the IO of ILS (p<.05) and a decrease in the MF of GLS (p<.05). Trunk muscle thickness was significantly increased in left EO and both IO of GLS (p<.05), and also significant increased right EO, both IO, both TrA, and both MF of the ILS (p<.05). In the future, a convergence approach of rehabilitation and engineering is needed to select a sensor suitable for rehabilitation purposes, study the validity and reliability of data, and produce appropriate rehabilitation contents.