• Title/Summary/Keyword: Trunk Control Rehabilitation Robot Training

Search Result 3, Processing Time 0.02 seconds

Effects of Trunk Control Rehabilitation Robot Training on Dynamic Balance, Lower Extremity Strength, Gait Ability and Pain in Bipolar Hemiarthroplasty

  • Yang, HyunKwan;Lim, Hyoungwon
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.2
    • /
    • pp.94-102
    • /
    • 2019
  • Purpose: This study examined the effects of trunk control rehabilitation robot training (TCRRT) on the dynamic balance, lower extremity strength, gait ability and pain for bipolar hemiarthroplasty. Methods: Hemiarthroplasty (n=28) patients participated in this study. The subjects were randomized into two groups: trunk control rehabilitation robot training group and control group. Results: The TCRRT group showed significantly more improvement in the MFRT, MMT, 10MWT, TUG, and VAS compared to that before intervention (p<0.05). In addition, all tests were significantly greater in the experimental group than in the control group. Conclusion: These results suggest that TCRRT is feasible and effective for improving the dynamic balance, lower extremity strength, gait ability, and pain efficacy after bipolar hemiarthroplasty.

The Effects of PNF and Trunk Stabilization Robot Training on Trunk Stability and Balance in Patients with Chronic Stroke (PNF 목 패턴을 병행한 체간안정로봇훈련이 만성 뇌졸중 환자의 체간 안정성 및 균형능력에 미치는 영향)

  • Moon, Hyun-Min;Kim, Dong-Hoon
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.67-77
    • /
    • 2021
  • Purpose: The purpose of the study was to identify the effects of proprioceptive neuromuscular facilitation (PNF) training and robot rehabilitation training on trunk stability and standing balance in individuals with chronic stroke. Methods: There were 30 patients with chronic stroke, divided into two groups: 15 subjects who received PNF and robot training (the experimental group) and 15 subjects who received standard conservative training (the control group), that participated. The experimental group received treatment for 60 min: 30 min of conventional physical therapy, 15 min of PNF training, and 15 min of robot training. The control group received conventional physical therapy for 60 min. Trunk stabilization (trunk impairment scale) and standing balance (center of pressure, limit of stability, modified functional reach test, and Berg balance scale) were measured before and after intervention. Results: Within each group, both the experimental and control groups significantly improved after the intervention in all tests; however, the experimental group showed greater improvement in scores on the trunk impairment scale, the center of pressure, the limit of stability, the modified functional reach test, and the Berg balance scale. Conclusion: The study verified that PNF training and robot training had a positive influence on trunk stability and standing balance indices in patients with chronic stroke.

Effects of trunk control robot training on balance and gait abilities in persons with chronic stroke

  • Lim, Chae-gil
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Objective: To investigate the effects of training using a trunk control robot (TCR) system combined with conventional therapy (CT) on balance and gait abilities in persons with chronic stroke. Design: Two-group pretest-posttest design. Methods: Thirty-five subjects with chronic stroke were randomly assigned to either the TCR group (n=17) or the trunk extension-training (TET) group (n=18). Both groups performed CT for 30 minutes, after which the TCR group performed TCR training and the TET group performed trunk extension training for 20 minutes. Both groups performed the therapeutic interventions 3 days per week for 6 weeks. Balance ability was evaluated using the Berg Balance Scale (BBS), and the Timed Up-and-Go (TUG) test. Gait ability was measured using the 10 m Walk Test (10MWT) and the NeuroCom Smart Balance Master. Results: TCR group showed significant improvements in static balance (weight bearing) and dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width (p<0.05); step length was not significant. The TET group showed a significant partial improvement of dynamic balance (weight shifting speed, weight shifting direction, BBS, and 10MWT (p<0.05), but the improvements in static balance, TUG, gait speed, and step width and step length was not significant. Additionally, significant differences in static balance, dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width were detected between groups (p<0.05). Conclusions: TCR training combined with CT is effective in improving static and dynamic balance, as well as gait abilities in persons with chronic stroke.