• 제목/요약/키워드: Truncated power law distribution

검색결과 3건 처리시간 0.018초

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A.;Alashti, R. Akbari;Pashaei, M.H.
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.77-96
    • /
    • 2014
  • In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

3차원 이산 균열망 흐름장에서 균열요소의 길이분포 변화에 따른 내 유체 흐름 특성에 관한 수치적 연구 (A Numerical study on characteristics of fluid flow in a three-dimensional discrete fracture network with variation of length distributions of fracture elements)

  • 정우창
    • 한국수자원학회논문집
    • /
    • 제52권2호
    • /
    • pp.149-161
    • /
    • 2019
  • 본 연구에서는 3차원 이산 균열망 수치모형을 이용하여 균열망을 구성하는 균열요소의 길이분포가 유체 흐름 특성이 미치는 영향에 대해 수치적으로 분석하였다. 균열요소의 길이분포의 생성을 위해 절단멱분포법칙을 적용하였으며, 지수 ${\beta}_l$을 1.0에서부터 6.0까지 변화시키면서 유체 흐름 모의를 수행하였다. 모의결과 지수 ${\beta}_l$이 증가함에 따라 균열요소들의 길이분포는 점차적으로 작아지며, 이로 인해 균열망의 투수성에 영향을 미치는 균열요소들 간의 연결성은 취약해지는 것으로 나타났다. 각각의 지수 ${\beta}_l$에 대해 균열요소 각각에서 계산된 유량분포를 분석하였을 때 ${\beta}_l=1.0$에서의 평균유량이 ${\beta}_l=6.0$에 비해 약 447배 크게 산정되었으며, 균열망의 유출경계에서 계산된 유량의 경우 ${\beta}_l=1.0$일 때가 6.0에 비해 약 6,440배 크게 산정되었다.