• Title/Summary/Keyword: True Resonance

Search Result 51, Processing Time 0.025 seconds

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.44
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.

Dynamic Behavior of Plate Girder Railway Bridges using the Finite Element Code (유한요소프로그램을 이용한 철도판형교의 동적거동)

  • Oh Ji-Taek;Song Jae-Pil;Kim Ki-Bong;Kim Hyun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.228-234
    • /
    • 2005
  • Investigation on the dynamic behavior of railway bridges has not performed widely to date except high-speed railway bridges. In this study, 3-dimensional model is used for the finite element analysis of plate girder railway bridges. Train loads obtained through statistical approach of the measured true train loads are used. Numerical analysis is carried out about a 18m-span bridge. This result is compared with that of the experimental test of existing plate gilder railway bridge without ballast. The good agreement was obtained through the comparison. Judging from the analysis, resonant speed of diesel locomotive train is about 120km/h. However, the resonance for the other train is not found from the analysis.

Magnetization Transfer Contrast Angiography for Organized Thrombosed Intracranial Aneurysm in TOF MR Angiography: a Case Report

  • Kang, Dong-Hun;Lee, Hui Joong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.266-271
    • /
    • 2018
  • A 66-year-old woman was referred for treatment of incidental detection of two intracranial aneurysms. Time-of-flight MR angiography (TOF MRA) revealed two aneurysms at the M1 segment of the right middle cerebral artery, and clinoid segment of left internal carotid artery, respectively. On digital subtraction angiography, there was a saccular aneurysm on the left internal carotid artery, but the other aneurysm was not detected on the right middle cerebral artery. Based on comprehensive review of imaging findings, organized thrombosed aneurysm was judged as the most likely diagnosis. In the presented report, magnetization transfer (MT) pulse to TOF MRA was used, to differentiate aneurysm-mimicking lesion on TOF MRA. We report that MT technique could be effective in differentiating true aneurysm, from possible T1 high signal artifact on TOF MRA.

Phantom-Validated Reference Values of Myocardial Mapping and Extracellular Volume at 3T in Healthy Koreans

  • Lee, Eunjin;Kim, Pan Ki;Choi, Byoung Wook;Jung, Jung Im
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.141-153
    • /
    • 2020
  • Purpose: Myocardial T1 and T2 relaxation times are affected by technical factors such as cardiovascular magnetic resonance platform/vendor. We aimed to validate T1 and T2 mapping sequences using a phantom; establish reference T1, T2, and extracellular volume (ECV) measurements using two sequences at 3T in normal Koreans; and compare the protocols and evaluate the differences from previously reported measurements. Materials and Methods: Eleven healthy subjects underwent cardiac magnetic resonance imaging (MRI) using 3T MRI equipment (Verio, Siemens, Erlangen, Germany). We did phantom validation before volunteer scanning: T1 mapping with modified look locker inversion recovery (MOLLI) with 5(3)3 and 4(1)3(1)2 sequences, and T2 mapping with gradient echo (GRE) and TrueFISP sequences. We did T1 and T2 mappings on the volunteers with the same sequences. ECV was also calculated with both sequences after gadolinium enhancement. Results: The phantom study showed no significant differences from the gold standard T1 and T2 values in either sequence. Pre-contrast T1 relaxation times of the 4(1)3(1)2 protocol was 1142.27 ± 36.64 ms and of the 5(3)3 was 1266.03 ± 32.86 ms on the volunteer study. T2 relaxation times of GRE were 40.09 ± 2.45 ms and T2 relaxation times of TrueFISP were 38.20 ± 1.64 ms in each. ECV calculation was 24.42% ± 2.41% and 26.11% ± 2.39% in the 4(1)3(1)2 and 5(3)3 protocols, respectively, and showed no differences at any segment or slice between the sequences. We also calculated ECV from the pre-enhancement T1 relaxation time of MOLLI 5(3)3 and the post-enhancement T1 relaxation time of MOLLI 4(1)3(1)2, with no significant differences between the combinations. Conclusion: Using phantom-validated sequences, we reported the normal myocardial T1, T2, and ECV reference values of healthy Koreans at 3T. There were no statistically significant differences between the sequences, although it has limited statistical value due to the small number of subjects studied. ECV showed no significant differences between calculations based on various pre- and post-mapping combinations.

Source Image Based New 3D Rotational Angiography for Differential Diagnosis between the Infundibulum and an Internal Carotid Artery Aneurysm : Pilot Study

  • Jang, Hyeongyu;Jung, Woo Sang;Myoung, Seong Uk;Kim, Jung-Jae;Jang, Chang Ki;Cho, Kwang-Chun
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.726-731
    • /
    • 2021
  • Objective : Distinguishing between an infundibulum and a true aneurysm is clinically important. This study aimed to evaluate whether using source image based new three-dimensional rotational angiography (S-n3DRA) can increase the rate of aneurysm detection and improve distinction between a true aneurysm and an infundibulum. Methods : Twenty-two consecutive patients with 23 lesions, were evaluated by time-of-flight (TOF) magnetic resonance angiography (MRA), S-n3DRA, and digital subtraction angiography (DSA). The data were retrospectively and independently reviewed by two neurointerventionists, and the diagnoses based on TOF MRA, S-n3DRA, and DSA were compared. The diagnostic efficacy (interobserver agreement and diagnostic performance) of S-n3DRA was compared with that of TOF MRA. Results : S-n3DRA showed higher interobserver agreement (κ=0.923) than TOF MRA (κ=0.465) and significantly higher accuracy than MRA in distinguishing an aneurysm from an infundibulum (p=0.0039). Conclusion : Compared to MRA, S-n3DRA could provide better screening accuracy and information for distinguishing an aneurysm from an infundibulum. Therefore, S-n3DRA has the potential to reduce the need for DSA.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging

  • Gao Ma;Xiao-Quan Xu;Liu-Ning Zhu;Jia-Suo Jiang;Guo-Yi Su;Hao Hu;Shou-Shan Bu;Fei-Yun Wu
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.243-252
    • /
    • 2021
  • Objective: To compare and correlate the findings of intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging and arterial spin labeling (ASL) imaging in characterizing parotid gland tumors. Materials and Methods: We retrospectively reviewed 56 patients with parotid gland tumors evaluated by MR imaging. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and fraction of perfusion (f) values of IVIM imaging and tumor-to-parotid gland signal intensity ratio (SIR) on ASL imaging were calculated. Spearman rank correlation coefficient, chi-squared, Mann-Whitney U, and Kruskal-Wallis tests with the post-hoc Dunn-Bonferroni method and receiver operating characteristic curve assessments were used for statistical analysis. Results: Malignant parotid gland tumors showed significantly lower D than benign tumors (p = 0.019). Within subgroup analyses, pleomorphic adenomas (PAs) showed significantly higher D than malignant tumors (MTs) and Warthin's tumors (WTs) (p < 0.001). The D* of WTs was significantly higher than that of PAs (p = 0.031). The f and SIR on ASL imaging of WTs were significantly higher than those of MTs and PAs (p < 0.05). Significantly positive correlation was found between SIR on ASL imaging and f (r = 0.446, p = 0.001). In comparison with f, SIR on ASL imaging showed a higher area under curve (0.853 vs. 0.891) in discriminating MTs from WTs, although the difference was not significant (p = 0.720). Conclusion: IVIM and ASL imaging could help differentiate parotid gland tumors. SIR on ASL imaging showed a significantly positive correlation with f. ASL imaging might hold potential to improve the ability to discriminate MTs from WTs.

Analysis of Singing Technique of Mongolian Traditional Singing Called Khoomei (몽골 전통 발성 흐미의 발성 방법 분석에 대한 사례연구)

  • Nam, Do-Hyun;Paik, Jae-Yeon;Hwang, Yoen-Shin;Choi, Hong-Shik
    • Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.145-156
    • /
    • 2008
  • The goal of this study was to investigate acoustic and physiologic characteristics of two phonation types of 'Khoomei' which is a traditional singing style of people who live around the Altai mountains or Mongolia region. It can be produced two pitches simultaneously - high melody pitch can be perceived along with a low drone pitch. Sygyt and kargyraa styles are the most popular and identifiable styles and they can be recognized as the different sounds depending on the method of voice production. Two trained Mongolians participated and have used at least 5 - 6 years. The characteristics of this voice production were measured by using flexible fiberscope, Stroboscopy, Lx Speech studio, Spead, and Doctor Speech. In Sygyt style, very high vocal fold closure (71.50%) with both true and false vocal folds contact and strong breathing support was observed. They also showed that tongue height and harmonics were increased (around 10dB) with resonance cavity movement. In contrast, it was found that Kargyraa sound had very low pitch with relaxed stomach, less laryngeal tension and lower vocal fold contact (69.50%) than hard Sygyt style sound without raising the tongue during phonation. 'Khoomei' phonation can be made by strong contact of both true and false vocal folds and by increasing the harmonics as well.

  • PDF

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.