• Title/Summary/Keyword: Trucks

Search Result 453, Processing Time 0.027 seconds

Development and Application of an Evaluation Method for a Freight Vehicle Route Management System (화물자동차 통행관리제도의 평가방법 개발 및 적용 (서울지역을 대상으로))

  • Kim, Yu-Chan;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.17-28
    • /
    • 2008
  • Favorable policies for freight vehicles (i.e., trucks), such as exclusive "Truck-ways," have been proposed, and at the same time restricted policies for freight vehicles have been suggested because transportation of goods by truck aggravates traffic congestion and environmental conditions in urban areas. This study discusses the limitations of assessment processes for freight vehicle route management systems which have been carried out from limited perspectives such as physical distribution efficiency and traffic circulation. The objective of this study is to propose an assessment method of truck route management systems in urban areas which includes more varied criteria. This research modified the two existing assessment indices of physical distribution efficiency and traffic circulation. In addition two new assessment indexes are proposed: (i) exposure indices for population directly influenced by nitrous oxide, a representative pollutant, and (ii) a friction index between trips for attending elementary school and freight vehicle trips. It was found that from the perspective of physical distribution efficiency and traffic circulation, the "before" alternative is better than "after". However, from the aspect of traffic safety and environmental impacts the "after" alternative is better than "before". It is expected that the proposed evaluation method in this study would be useful when identifying reasonable policies for truck route management in urban areas.

An Effectiveness Analysis of Pilot Enforcement for Overweight Vehicles(Trucks) using High-Speed Weigh-In-Motion System (고속 축중기를 이용한 고속도로 과적 시범단속 시행효과 분석)

  • Choi, Yoon-Hyuk;Kwon, Soon-Min;Park, Min-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2016
  • On January 16 to May 31, 2012, Korea Expressway Corporation was carried out an pilot overweight enforcement using high-speed weigh-in-motion at Gyeongbu expressway 195.0k (Gimcheon) and Jungbunaeryuk expressway 119.5k (Seonsan). In this study, it is attempted to analyze the practical effect of high-speed weigh-in-motion by comparing the average total weight and traffic volume of eight weeks before and after the these overweight enforcement, respectively. The main results are as follows: First, the result of analysis of the change in average total weight and traffic volume, it was found that it did not differ after as in previous traffic volume, and the total weight is reduced. This means that the total weight is not reduced by decreasing freight traffic, but by decreasing the total weight. Therefore, it can be seen that there is an effect of pilot overweight enforcement using high-speed weigh-in-motion. Second, the average total weight and total weekly traffic volume decreased rapidly starting from the start of the overweight enforcement, but there was showing a tendency to increase gradually again.

A Study on Selective Catalytic Reduction on Diesel Particulate Filter Catalyst and Coating Technology the Removal of Particulate Matters and NOx for Old Special Cargo Vehicles (노후 특수·화물 차량 PM/NOx 저감을 위한 SDPF 촉매 및 코팅 기술 연구)

  • Jeong, Kwanhyoung;Seo, Philwon;Oh, Hungsuk;Kim, Jongkook;Kang, Soyeon;Kang, Jeongho;Kim, Hyunjun;Shin, Byeongseon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.695-699
    • /
    • 2021
  • In this study, Selective Catalytic Reduction on Diesel Particulate Filter (SDPF) after-treatment system was introduced to simultaneously remove NOx and Particulate Matters (PM) emitted from trucks and special cargo vehicles using old engine. First, in order to select an Selective Catalytic Reduction (SCR) catalyst for SDPF, the de-NOx performance of V/TiO2 and Cu-Zeolite catalysts were compared, and the SCR catalyst characteristics were analyzed through Brunauer Emmett Teller (BET), X-ray Diffraction (XRD) and NH3-TPD (Temperature Programmed Desorption). From the activity test results, the Cu-zeolite catalyst showed the best thermal stability. For optimal coating of SDPF, slurry was prepared according to the target particle size. From the coating stability and back pressure test results of SDPF according to the amount of SCR coating, As a result of comparing coating stability, back pressure, and de-NOx performance by producing A, B, and C samples for each loading amount of the SDPF catalyst, the best results were found in the B sample. The engine dynamometer test was conducted for the optimal SDPF after-treatment system, and the test results satisfied Eu-5 regulations.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load (표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Kim, Duhwan;Jin, Hyunsik;Seo, Seunghwan;Park, Jaehyun;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.119-128
    • /
    • 2018
  • Limit state design has been implemented in Korea since 2015; however, there exists no specification of lateral load determination on retaining wall due to the Korean standard traffic load on retaining wall's backfill surface. The lateral load from traffic depends on lane number, standard truck's axle loads and locations, loading distance from the inner wall. The concept of equivalent height of soil accounting for traffic loadings is typically used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the Korean standard truck, based on the findings from analytical solutions using Bounessq's theory and numerical assessment using 2D finite element method. Consequently, it was found that the equivalent heights of soil from the Korean standard truck load were lower for lower retaining wall height.

Pohang City Fire Vulnerable Area Prediction and Fire Damage Rating Measurement by Administrative District (포항시 화재 취약지역 예측 및 이에 따른 행정구역별 화재 피해 등급 측정)

  • Lim, Jung-Hoon;Kim, Heon-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.166-176
    • /
    • 2021
  • Due to urbanization and industrialization, the importance of large-scale fire prevention, management and measures is increasing day by day. However, the fire site arrival rate in Golden Time, which is a factor that can minimize large-scale fire damage, of Pohang, a large city with a population of over 500,000, is relatively low. So additional fire fighting power deployment and infrastructure investment are required. However, as budget and manpower are limited, it is necessary to selectively deploy fire fighting power and invest in infrastructure. Therefore, this study attempted to present a fire damage rating that can compare the level of fire damage, which is an index that can help selectively provide fire fighting services in Pohang and make related decisions. For the index, the OD cost matrix was used to predict fire vulnerable areas with a high probability of increasing the fire scale in the event of a fire. Also fire damage was measured by predicting the level of fire damage in the event of a fire according to population, building density, and access of fire trucks. It is expected that the fire damage rating will be able to help in various decisions related to fire fighting service deployment and services not only in Pohang city, but also in other regions.

Factors of Selecting Temporary Road Positions for the Optimal Path of Earthwork Equipment in Road Constructions (도로공사에서 토공장비 최적 이동을 위한 가설도로 위치선정 요소)

  • Lee, Dong-Jun;Kim, Sung-Keun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.85-94
    • /
    • 2022
  • Construction industry is facing difficult challenges in terms of productivity, manpower, and industrial accidents. Currently, along with the 4th Industrial Revolution, various high-tech technologies are emerging, and efforts are being made to solve the problem by applying the technologies related to the 4th Industrial Revolution to the construction industry. As part of these efforts, research is being conducted to develop a construction equipment control system to increase productivity and safety at earthworks sites where many and various types of construction equipment are involved, and the system needs a function to increase productivity by optimizing the moving path of construction equipment. In the case of trucks, the location of the temporary road must be optimized in order to optimize the path of movement in the construction site. However, only matters related to the quality standard of temporary roads have been suggested so far, and there is no standardized process for efficiently determining the location of temporary roads. In this paper, the factors and its importance related to the location of the temporary road were identified through field surveys and interviews with experts, and a method for determining the location of the temporary road was presented. It was confirmed that the suggested method through a case study could improve the productivity of earthwork.

Aircraft Velocity and Altitude Estimation through Time Offset Calculation of KOMPSAT-3 Satellite (KOMPSAT-3 위성의 Time Offset 계산을 통한 항공기 속력 및 고도 추정)

  • Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Song, Ahram;Lee, Won Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1879-1887
    • /
    • 2022
  • In this study, a method of estimating the velocity and altitude of aircrafts photographed in a KOMPSAT-3 satellite was proposed. In the proposed method, parallax effect, which is a time offset between bands due to the photographing method of the KOMPSAT-3 satellite, the structure of the sensor, and the movement of the satellite's orbit, was calculated, and in this process, trucks running on the highway were used. In addition, the actual direction and the direction by parallax effect of the aircraft were calculated using the coordinates of the aircraft in the image, and the attitude information of the KOMPSAT-3 satellite was calculated using metadata to estimate the velocity and altitude of the aircraft. The estimated value through the proposed method was compared with the actual value, automatic dependent surveillance-broadcast (ADS-B), and the error rate was calculated here. As a result, it was confirmed that the velocity and altitude error rate of large aircraft (I1, I3, S2) were lower than that of light aircraft (I2, S2), and the estimated velocity and altitude were relatively high in large aircraft using the proposed method.

A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning (머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구)

  • Jo, Jae-Hyeok;Kim, Sungsu
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.83-106
    • /
    • 2021
  • Interests in clean fuels have been soaring because of environmental problems such as air pollution and global warming. Unlike fossil fuels, hydrogen obtains public attention as a eco-friendly energy source because it releases only water when burned. Various policy efforts have been made to establish a hydrogen based transportation network. The station that supplies hydrogen to hydrogen-powered trucks is essential for building the hydrogen based logistics system. Thus, determining the optimal location of refueling stations is an important topic in the network. Although previous studies have mostly applied optimization based methodologies, this paper adopts machine learning to review spatial attributes of candidate locations in selecting the optimal position of the refueling stations. Machine learning shows outstanding performance in various fields. However, it has not yet applied to an optimal location selection problem of hydrogen refueling stations. Therefore, several machine learning models are applied and compared in performance by setting variables relevant to the location of highway rest areas and random points on a highway. The results show that Random Forest model is superior in terms of F1-score. We believe that this work can be a starting point to utilize machine learning based methods as the preliminary review for the optimal sites of the stations before the optimization applies.

Development of Mask-RCNN Based Axle Control Violation Detection Method for Enforcement on Overload Trucks (과적 화물차 단속을 위한 Mask-RCNN기반 축조작 검지 기술 개발)

  • Park, Hyun suk;Cho, Yong sung;Kim, Young Nam;Kim, Jin pyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.57-66
    • /
    • 2022
  • The Road Management Administration is cracking down on overloaded vehicles by installing low-speed or high-speed WIMs at toll gates and main lines on expressways. However, in recent years, the act of intelligently evading the overloaded-vehicle control system of the Road Management Administration by illegally manipulating the variable axle of an overloaded truck is increasing. In this manipulation, when entering the overloaded-vehicle checkpoint, all axles of the vehicle are lowered to pass normally, and when driving on the main road, the variable axle of the vehicle is illegally lifted with the axle load exceeding 10 tons alarmingly. Therefore, this study developed a technology to detect the state of the variable axle of a truck driving on the road using roadside camera images. In particular, this technology formed the basis for cracking down on overloaded vehicles by lifting the variable axle after entering the checkpoint and linking the vehicle with the account information of the checkpoint. Fundamentally, in this study, the tires of the vehicle were recognized using the Mask RCNN algorithm, the recognized tires were virtually arranged before and after the checkpoint, and the height difference of the vehicle was measured from the arrangement to determine whether the variable axle was lifted after the vehicle left the checkpoint.

Disaster Reduction Plan through Forklift Accident Case Analysis (지게차 재해사례 분석을 통한 재해감소방안)

  • Young Min Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.173-183
    • /
    • 2023
  • Purpose: In order to reduce industrial accidents caused by forklift trucks, it is actually necessary to analyze the causes of accidents. This study aims to present disaster prevention measures by analyzing accident cases by forklift accident type. Method: For the analysis of industrial accidents, including serious industrial accidents caused by forklifts from 2021 to 2022, accident statistics from the Korea Occupational Safety and Health Agency were used to analyze accidents in four types. Result: In the last two years, the total number of victims, including deaths and other serious injuries, was 2,559, which was 1,396 in 2021 and 1,163 in 2022. Disaster prevention measures were presented for industrial accidents by size and occurrence type of equipment that cause serious industrial accidents in which more than 1,000 people are injured annually. Conclusion: It is necessary to expand the number of workers subject to the forklift financial support project to less than 100. It is necessary to amend the proviso on boarding restrictions in Article 86, Paragraph 7 of the 「Regulations on Industrial Safety and Health Standards」. It is mandatory to install front and rear cameras. It is necessary to install driving-linked safety belts. It is necessary to install line beams obligatory. It is necessary to expand the subject of forklift special safety and health education to workplaces that have more than one forklift truck, and it is necessary to redesignate the training hours to 16 hours every year.