• Title/Summary/Keyword: TruckSim

Search Result 27, Processing Time 0.032 seconds

Low Frequency Noise Characteristics of Dump Truck (덤프트럭의 저주파 소음 특성)

  • Jung, Sung-Soo;Jeon, Byeong-Su;Shin, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1183-1186
    • /
    • 2007
  • The low frequency noise, including infra-sound is known to affect human physiology and psychology. Guidelines and measurement method of low frequency noise has been introduced in several countries in order to evaluate low frequency noise. In this work, low frequency noise characteristics of dump truck was investigated in terms of the noise level and spectrum. The interior sound pressure level of the dump truck was between 60 and 105 dB in the frequency range of $1{\sim}250$ Hz.

  • PDF

A Study on the Design and Development of the Power Transmission System for Lift Truck (지게차 전용 동력전달시스템의 설계 및 개발에 관한 연구)

  • Jang, Kyoung-Yeol;Park, Joong-Sun;Yoo, Woo-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.34-43
    • /
    • 2009
  • In this thesis, we explain developing processes of the power transmission system for lift truck. Conventional power transmission system had some problems such as spatial constraints or low speed and high torque problem. Because conventional power transmission system was mainly designed for high speed vehicles. In this paper we developed power shift drive axle specialized for $2.0{\sim}3.5$ ton lift truck. Innovative structure of transmission which is built in inside axle, enables to reduce system weight and size by 40% compared to the conventional power transmission system. Also, it is possible to do additional functions such as auto parking system and anti-roll back system.

A Study on the Evaluation Methods from Probability Computation of Bridge (교량의 과하중 확률계산을 통한 상태평가 등급 산정방법에 대한 연구)

  • Kim, Doo-Hwan;Yoo, Chang-Uk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of process for repair and reinforcement of the bridge is increasing because of the lack of the fatigue load and stress, a lowering of the bridge load carrying capacity owing to impact and oscillation, deterioration on cultivation periods of the bridge, etc. Typically the experimenter values the bridge load carrying capacity by the real rating factor and response modification factor in bridge load rating through static load test and dynamic load test. But the error occurred in reliability of response modification factor in bridge load rating according to experience of experimenter. so tests of connecting probability theory and valuation of the bridge recently. The study is to compute the real load carrying capacity of the bridge and the rating factor and response modification factor on grade of the bridge, and calculate the probability of over-loaded truck load from Weigh In Motion(WIM) Data in FORTRAN programming applying to Monte-Carlo Simulation. At the result of this study, it is acquired that the new grade is computed for the probability of over-loaded truck load and surface inspection. The A grade is over 1.95, B grade is $1.55{\sim}1.94$, C grade is $1.26{\sim}1.54$, D grade is $1.14{\sim}1.25$, E grade is under 1.13 of rating factor, respectively.

A Study on Applicability of Diversified Truck Weight-to-Power Ratios (표준트럭의 차별적 적용 방안 연구)

  • Oh Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.89-98
    • /
    • 2006
  • The weight-to-power ratio of the standard truck for the climbing lane design is known to be 200lb/hp. The value was known to be assumed based on constant trucks' capability and regional distributions in stead of widely varied distributions region by region. Additionally, this value was assumed after investigating registered vehicles' statistics instead of investigating real portions of truck volumes. Therefore, it may be said that the value of the current standard truck does not reflect regional or industrial diversity and proportions of truck volumes. To resolve these issues, the present paper studies diversified standard trucks which consider regionally or industrially diversified and observed-volume based weigh-to-power ratios. For this purpose, individual trucks' weigh-to-power ratios obtained at toll-gates of national expressways were used. For regionally based study, the whole nation are divided into 8 regions, then each region is characterized by a unit of a weigh-to-power ratio. The applicability of each value is provided. Results show that the single value for the nationwide standard truck may be 208 lb/hp, 8 lb/hp higher than the current value of 200 lb/hp. Results also show that regional values ranged widely from 170 lb/hp to 230 lb, 30 lb/hp higher/lower than the current value. Conclusively, regional diversity of trucks' weigh-to-power ratios was identified then three types of standardized weigh-to-power ratios which may represent regional characteristics were suggested. As the diversified standard truck are applied to the design standard, two benefits are expected such as decrease of rear-end accident rates or decrease of climb lane construction costs.

  • PDF

Theoretical Review of Highway Grades Considering Vehicle Performances (차량성능을 고려한 최대종단경사 합리화 연구)

  • Kim, Sang-Yeop;Lee, Seung-Yong;Han, Hyeong-Gwan;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.79-90
    • /
    • 2007
  • In determining vertical grades in highway alignment design, engineers usually consider heavy vehicle performances on the upgrade. Heavy vehicles usually experience speed reduction on the upgrade and with recent years weight/horsepower improvements for heavy vehicles the speed reduction shows some change. However, in spite of the weight to horsepower improvements for the design vehicles from 300lb/HP to 200lb/HP in the AASHTO, there was no change in the maximum vertical grades. Therefore, a review of the maximum vertical grade reflecting existing heavy vehicle performances is required. In particular, in South Korea where highways pass through lots of mountaineous terrain, the maximum vertical grades must be reviewed throughly. In this study the amount of heavy vehicle performances during past decades were investigated and their expected impacts on highway vertical alignment designs were subsequently analyzed. A worldwide terrain analysis and international design standards were compared to set South Korean vertical grade standards. Traffic flow simulation Vissim was utilized to simulate vehicular flows on the upgrade and new truck performance curves on the grades were developed. Based on the new curve, it was decided that $1{\sim}2%$ increase of the maximum vertical grades could be allowed.

An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck (대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구)

  • Kim, Chul-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Decision Making Process for Wind Barrier Installation Considering Car Accident Risk (차량사고 위험도를 고려한 방풍벽 설치기준)

  • Kim, Dong-Hyun;Lee, Il-Keun;Kwon, Soon-Duck;Jo, Byung-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • This study presents a decision making process for installation of wind barrier which is used to reduce the wind acting on running vehicle on expressway. At the first stage of this study, the lateral deviations of running vehicles under side winds were computed from the commercial softwares, CarSim and TruckSim, and then the critical wind speeds for car accident were evaluated from predefined risk index. To determine whether it is needed to install wind barrier or not, cost and benefit from wind barrier are calculated during lifetime. In obtaining car accidental risk, probabilistic distribution of wind speed, daily traffic volume, mixture ratio in the volume, and duration time for wind speed range are considered. It is recommended to install wind barrier if benefit from the barrier installation exceed construction cost. In the numerical examples, case studies were shown for risk and benefit calculation and main risky regions on Korean highway were all evaluated to identify the number of installation sites.