• Title/Summary/Keyword: Trotter's operator

Search Result 2, Processing Time 0.018 seconds

ON THE WEAK LIMIT THEOREMS FOR GEOMETRIC SUMMATIONS OF INDEPENDENT RANDOM VARIABLES TOGETHER WITH CONVERGENCE RATES TO ASYMMETRIC LAPLACE DISTRIBUTIONS

  • Hung, Tran Loc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1419-1443
    • /
    • 2021
  • The asymmetric Laplace distribution arises as a limiting distribution of geometric summations of independent and identically distributed random variables with finite second moments. The main purpose of this paper is to study the weak limit theorems for geometric summations of independent (not necessarily identically distributed) random variables together with convergence rates to asymmetric Laplace distributions. Using Trotter-operator method, the orders of approximations of the distributions of geometric summations by the asymmetric Laplace distributions are established in term of the "large-𝒪" and "small-o" approximation estimates. The obtained results are extensions of some known ones.