• Title/Summary/Keyword: Troposphere ozone

Search Result 30, Processing Time 0.023 seconds

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Surface Ozone Episode Due to Stratosphere-Troposphere Exchange and Free Troposphere-Boundary Layer Exchange in Busan During Asian Dust Events

  • Moon, Y.S.;Kim, Y.K.;K. Strong;Kim, S.H.;Lim, Y.K.;Oh, I.B.;Song, S.K.
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.419-436
    • /
    • 2002
  • The current paper reports on the enhancement of O$_3$, CO, NO$_2$, and aerosols during the Asian dust event that occurred over Korea on 1 May 1999. To confirm the origin and net flux of the O$_3$, CO, NO$_2$, and aerosols, the meteorological parameters of the weather conditions were investigated using Mesoscale Meteorological Model 5(MM5) and the TOMS total ozone and aerosol index, the back trajectory was identified using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model(HYSPLIT), and the ozone and ozone precursor concentrations were determined using the Urban Ashed Model(UAM). In the presence of sufficiently large concentrations of NO$\sub$x/, the oxidation of CO led to O$_3$ formation with OH, HO$_2$, NO, and NO$_2$ acting as catalysts. The sudden enhancement of O$_3$, CO, NO$_2$ and aerosols was also found to be associated with a deepening cut-off low connected with a surface cyclone and surface anticyclone located to the south of Korea during the Asian dust event. The wave pattern of the upper trough/cut-off low and total ozone level remained stationary when they came into contact with a surface cyclone during the Asian dust event. A typical example of a stratosphere-troposphere exchange(STE) of ozone was demonstrated by tropopause folding due to the jet stream. As such, the secondary maxima of ozone above 80 ppbv that occurred at night in Busan, Korea on 1 May 2001 were considered to result from vertical mixing and advection from a free troposphere-boundary layer exchange in connection with an STE in the upper troposphere. Whereas the sudden enhancement of ozone above 100 ppbv during the day was explained by the catalytic reaction of ozone precursors and transport of ozone from a slow-moving anticyclone area that included a high level of ozone and its precursors coming from China to the south of Korea. The aerosols identified in the free troposphere over Busan, Korea on 1 May 1999 originated from the Taklamakan and Gobi deserts across the Yellow River. In particular, the 1000m profile indicated that the source of the air parcels was from an anticyclone located to the south of Korea. The net flux due to the first invasion of ozone between 0000 LST and 0600 LST on 1 May 1999 agreed with the observed ground-based background concentration of ozone. From 0600 LST to 1200 LST, the net flux of the second invasion of ozone was twice as much as the day before. In this case, a change in the horizontal wind direction may have been responsible for the ozone increase.

The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign (GMAP 2021 캠페인 기간 용인지역 오존 연직 분포 관측)

  • Ryu, Hosun;Koo, Ja-Ho;Kim, Hyeong-Gyu;Lee, Nahyun;Lee, Won-Jin;Kim, Joowan
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2022
  • The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.

Influence of Stratospheric Intrusion on Upper Tropospheric Ozone over the Tropical North Atlantic

  • Kim, So-Myoung;Na, Sun-Mi;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • This study observed the upper tropospheric ozone enhancement in the northern Atlantic for the Aerosols99 campaign in January-February 1999. To find the origin of this air, we have analyzed the horizontal and vertical fields of Isentropic Potential Vorticity (IPV) and Relative Humidity (RH). The arch-shaped IPV is greater than 1.5 pvus indicating stratospheric air stretches equatorward. These arch-shaped regions are connected with regions of RH less than 20%. The vertical fields of IPV and RH show the folding layer penetrating into the upper troposphere. These features support the idea that the upper tropospheric ozone enhancement originated from the stratosphere. Additionally, we have investigated the climatological frequency of stratospheric intrusion over the tropical north Atlantic using IPV and RH. The total frequency between the equator and $30^{\circ}N$ over the tropical north Atlantic exhibits a maximum in northern winter. It suggests that the stratospheric intrusion plays an important role in enhancing ozone in the upper troposphere over the tropical north Atlantic in winter and early spring. Although the tropospheric ozone residual method assumed zonally invariant stratospheric ozone, stratospheric zonal ozone variance could be caused by stratospheric intrusions. This implies that stratospheric intrusion influences ozone variance over the Atlantic in boreal winter and spring, and the intrusion is a possible source for the tropical north Atlantic paradox.

Investigation of SO2 effect on OMI-TOMS and OMI-DOAS O3 in volcanic areas with OMI satellite data (OMI 위성자료를 이용한 화산지역 고농도 이산화황 환경에서의 TOMS 오존과 DOAS 오존의 비교연구)

  • Choi, Wonei;Hong, Hyunkee;Park, Junsung;Kim, Daewon;Yeo, Jaeho;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.599-608
    • /
    • 2015
  • In this present study, we quantified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement. The difference between OMI-Total Ozone Mapping Spectrometer (TOMS) and OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ is calculated in high $SO_2$ volcanic plume on several volcanic eruptions (Anatahan, La Cumbre, Sierra Negra, and Piton) from 2005 through 2008. There is a certain correlation ($R{\geq}0.5$) between the difference and $OMI-SO_2$ in volcanic plumes and the significant difference close to 100 DU. The high $SO_2$ condition found to affect TOMS $O_3$ retrieval significantly due to a strong $SO_2$ absorption at the TOMS $O_3$ retrieval wavelengths. Besides, we calculated the difference against various $SO_2$ levels. There is the considerable difference (average = 32.9 DU; standard deviation = 13.5 DU) in the high $OMI-SO_2$ condition ($OMI-SO_2{\geq}7.0DU$). We also found that the rate of change in the difference per 1.0 DU change in middle troposphere (TRM) and upper troposphere and stratosphere (STL) $SO_2$ columns are 3.9 DU and 4.9 DU, respectively.

Tropospheric Ozone Retrieval Algorithm Based on the TOMS Scanning Geometry

  • Kim, Jae-Hwan;Na, Sun-Mi;Newchurch, M.J.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • This paper applies the Scan-Angle Method (SAM) to the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe (EP) satellite for determining tropospheric ozone based on TOMS scan geometry. In the northern tropical Africa burning season, the distribution of the SAM-derived tropospheric ozone presents a tropospheric ozone enhancement related to biomass burning. This distribution is consistent with that of fire counts observed from Along Track Scanning Radiometer (ATSR) and that of carbon monoxide, the tropospheric ozone precursor, observed from Measurements of Pollution In The Troposphere (MOPITI). However, this feature is not shown in the distribution of tropospheric ozone derived from other TOMS-based algorithms for the northern burning season. In the high latitudes, the influence of pollution in the SAM results is seen over the northern continents in agreement with carbon monoxide for northern summer when the dynamical activity is weak in the northern hemisphere.

The origin and seasonal characteristics of tropospheric ozone observed over Pohang, Korea

  • Kim, Jae-Hwan;Lee, Hyun-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.59-60
    • /
    • 2003
  • In this study, we present the analysis of vertical ozone sounding data observed over Pohang, Korea, and investigate to understand the governing mechanisms for seasonal ozone maximum in June. The vertical ozone profiles in June show that the ozone enhancement is clearly shown in the middle and upper troposphere. We have found that the June maximum is associated with the transport of ozone rich air from the stratosphere and polluted continental air mass. This is different from the previous studies shown that the regionally polluted continental air mass, influenced by the intense anthropogenic activities m northeast Asia during transport, is responsible for the ozone maximum in spring.

  • PDF

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.

Characteristics of the surface ozone concentration on the occurrence of air mass thunderstorm (기단성 뇌우 발생시 지표오존농도의 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.419-426
    • /
    • 2003
  • This study was performed to research ozone concentration related to airmass thunderstorm using 12 years meteorological data(1990~2001) at Busan. The occurrence frequency of thunderstorm during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence at summertime(59%). In case August 4, 1996, increase of ozone concentration was simultaneous with the decrease of temperature and increase of relative humidity, In case July 23, 1997, ozone concentration of western site at Busan increased, while its of eastern site decreased as airmass thunderstorm occurred(about 1500LST). It is supposed that these ozone increases are the effect of ozone rich air that is brought down by cumulus downdrafts from height levels where the ozone mixing ratio is larger. Thunderstorms can cause downward transport of ozone from the reservoir layer in the upper troposphere into planeta교 boundary layer(PBL). This complex interaction of source and sink processes can result in large variability fer vertical and horizontal ozone distributions. Thus a variety of meteorological precesses can act to enhance vertical mixing between the earth's surface and the atmospheric in the manner described fer thunderstorm.

Ozone Monitoring in the Lower Tropospheric Atmosphere by LIDAR System (라이다 시스템을 이용한 하층 대류권 오존농도 측정)

  • 최성철;차형기;김덕현;김영상
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.385-393
    • /
    • 2001
  • We have developed a Differential Absortion LIDAR (DIAL) method for the measurement of lower tropospheric ozone concentration. We used two laser beams from quadrupled Nd:YAG (266 nm) for the resonance wavelength and dye lasers (299.5 nm) for non -resonance wavelength. Aerosol extinction coefficients in the lower troposphere was computed by both Klett and Slope methods. To correct the SIN (Signal -Induced Noise) effect caused by photo detector, we subtracted a new-fitted baseline on the background part of a LIDAR signal, after the subtraction of the DC level. This is because SIN can be treated as an exponentially decaying tail. Using theme results, ozone profiles were obtained approximately 2km at daytime and 3km at nighttime. We compared the results derided by the Slope method with those measured by UV spectrometer. The computed results are in mostly good agreement with experimental results. In the measurement of the vertical layer, we observed the variation of the ozone profiles around the top mixed layer.

  • PDF