• Title/Summary/Keyword: Tropical cyclone

Search Result 125, Processing Time 0.029 seconds

Characteristics of Typhoon in 2006 and Improvement of Typhoon Forecast (2006년 태풍 특징과 태풍 예보의 개선방향)

  • Cha, Eun-Jeong;Lee, Kyung-Hi;Park, Yun-Ho;Park, Jong-Sook;Shim, Jae-Kwan;In, Hee-Jin;Yoo, Hee-Dong;Kwon, Heok-Joe;Shin, Do-Shick
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.299-314
    • /
    • 2007
  • The purpose of this study is to summarize tropical cyclone activity in 2006. Twenty three tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2006. The total number is less than the thirty-year (1971~2000) average frequency of 26.7. Out of twenty three tropical cyclones, fifteen cyclones reached typhoon (TY) intensity, while the rest eight cyclones only reached severe tropical storm (STS) and tropical storm (TS) intensity - three STS and five TS storms. The tropical cyclone season in 2006 began in May with the formation of CHANCHU (0601). The convective activity was slightly inactive around the Philippines from late June to early August. In addition, subtropical high was more enhanced than normal over the south of Japan from May to early August. Consequently, most tropical cyclones formed over the sea east of the Philippines after late June, and many of them moved westwards to China. CHANCHU (0601), BILIS (0604), KAEMI (0605), PRAPIROON (0606) and SAOMI (0608) brought damage to China, the Philippines, and Vietnam. On the other hand, EWINIAR (0603) moved northwards and hit the Republic of Korea, causing damage to the country. From late August to early September, convective activity was temporarily inactive over the sea east of the Philippines. However, it turned active again after late September. Subtropical high was weak over the south of Japan after late August. Therefore, most tropical cyclones formed over the sea east of the Philippines and moved northwards. WUKONG (0610) and SHANSHAN (0613) hit Japan to bring damage to the country. On the other hand, XANGSANE (0615) and CIMARON (0619) moved westwards in the South China Sea, causing damage to the Philippines, Thailand, and Vietnam. Another special feature in 2006 tropical cyclone activity is that IOKE (0612) formed in the central North Pacific crossed 180 degree longitude and moved into the western North Pacific. It has been four years since HUKO (0224) in 2002.

Possible effect of North Pacific Oscillation on Summer Tropical Cyclone Activity over the Western North Pacific (북서태평양에서 여름철 태풍활동에 대한 북태평양 진동의 영향)

  • Choi, Ki-Seon;Lee, Kyungmi;Kim, Jeoung-Yun;Park, Cheol-Hong
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.339-352
    • /
    • 2015
  • This study analyzed the change in tropical cyclone (TC) activity according to the fluctuation in July-to-September average North Pacific Oscillation index (NPOI) and its underlying large-scale environment during the last 37 years from 1977 to 2013. For this purpose, seven years with highest index NPOI value (positive NPOI phase) and another seven years with lowest NPOI index value (negative NPOI phase) among the 37 years were selected as sample after excluding the ENSO years. During the positive NPOI phase, TCs were created in the east of tropical and subtropical western North Pacific and moved to the west from the Philippines toward the southern region in China or toward far eastern sea of Japan. Meanwhile, during the negative NPOI phase, TCs tended to proceed to the north toward Korea or Japan passing East China Sea from the eastern sea of the Philippines. As a result, also in the TC recurvature, TCs in positive NPOI phase showed a tendency of recurving toward more eastern direction compared to TCs in negative NPOI phase. Hence, TC intensity was stronger in negative NPOI phase which allowed more time for obtaining energy from the ocean.

Characteristics of Tropical Cyclones over the Western North Pacific in 2008 (2008년 태풍 특징)

  • Cha, Eun-Jeong;Hwang, Ho-Seong;Yang, Kyung-Jo;Won, Seong-Hee;Ko, Seong-Won;Kim, Dong-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.183-198
    • /
    • 2009
  • The purpose of this study is to summarize the tropical cyclone (TC) activity of 2008 over the western North Pacific including the verification of the official track and intensity forecast errors of these TCs. The TC activity - frequency, Normalized Typhoon Activity (NTA), and life span - was lower than 58-year (1951-2008) average. 22 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2008. The total number is less than 58-year average frequency of 26.4. Out of 22 tropical cyclones, 11 TCs reached typhoon (TY) intensity, while the rest 11 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - six STS and five TS storms. One typhoon KALMAEGI (0807) among them affected the Korea peninsula. However, no significant impact - casualty or property damage - was reported. On average of 22 TCs in 2008, the Korea Meteorological Administration (KMA) official track forecast error for 48 hours was 229 km. There was a big challenge for individual cyclones such as 0806 FENGSHEN and 0817 HIGOS presenting significant forecast error, with both intricate tracks and irregular moving speed. The tropical cyclone season in 2008 began in April with the formation of NEOGURI (0801). In May, four TCs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to August. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2008 summertime. The 2008 TC activity has continued the below normal state since mid 1990s which is apparent the decadal variability in TC activity.

Decadal Change of Frequency in Korea Landfalling Tropical Cyclone Activity (한반도에 상륙한 태풍 빈도수의 십년간 변동 특성)

  • Choi, Ki-Seon;Cha, Yu-Mi;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Through a statistical change-point analysis, this study found that Korea landfalling tropical cyclone (TC) frequency has increased rapidly since 1981. This increase is due to the following phenomenon. When anomalous cyclone is developed in the East Asian continent, anomalous anticyclone is reinforced in the western Pacific, which is related to the eastward shift of western North Pacific high, and thus anomalous southerly is formed to Korea from low-latitudes. This anomalous southerly plays an important role as steering flow in moving TCs toward Korea. To examine the cause of the development of anomalous cyclone in the East Asian continent, this study analyzed the water equivalent of accumulated snow depth during the preceding spring (March to May). As a result, less snow depth is observed in most regions of the East Asian continent than before 1981. Therefore, anomalous cyclone in the East Asian continent in summer can be reinforced by the land heating from the preceding spring and then the steering flow of anomalous southerly that moves TCs toward Korea can be also developed to Korea from low-latitudes in summer.

Typhoon Simulation with a Parameterized Sea Surface Cooling (모수화된 해면 냉각을 활용한 태풍 모의 실험)

  • Lee, Duho;Kwon, H. Joe;Won, Seong-Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.97-110
    • /
    • 2006
  • This study investigates the response of a typhoon model to the change of the sea surface temperature (SST) throughout the model integration. The SST change is parameterized as a formulae of which the magnitude is given as a function of not only the intensity and the size but the moving speed of tropical cyclone. The formulae is constructed by referring to many previous observational and numerical studies on the SST cooling with the passage of tropical cyclones. Since the parameterized cooling formulae is based on the mathematical expression, the resemblance between the prescribed SST cooling and the observed one during the period of the numerical experiment is not complete nor satisfactory. The agreements between the prescribed and the observed SST even over the swath of the typhoon passage differ from case to case. Numerical experiments are undertaken with and without prescribing the SST cooling. The results with the SST cooling do not show clear evidence in improving the track prediction compared to those of the without-experiments. SST cooling in the model shows its swath along the incomplete simulated track so that the magnitude and the distribution of the sea surface cooling does not resemble completely with the observed one. However, we have observed a little improvement in the intensity prediction in terms of the central pressure of the tropical cyclone in some cases. In case where the model without the SST treatment is not able to yield a correct prediction of the filling of the tropical cyclone especially in the decaying stage, the pulling effect given by the SST cooling alleviates the over-deepening of the model so that the central pressure approaches toward the observed value. However, the opposite case when the SST treatment makes the prediction worse may also be possible. In general when the sea surface temperature is reduced, the amount of the sensible and the latent heat from the ocean surface become also reduced, which results in the weakening of the storms comparing to the constant SST case. It turns out to be the case also in our experiments. The weakening is realized in the central pressure, maximum wind, horizontal temperature gradient, etc.

Change of TC Activity Around Korea by Arctic Oscillation Phase (북극진동의 위상에 따른 한국 부근에서의 태풍 활동 변화)

  • Choi, Ki-Seon;Kim, Tae-Ryong
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.387-398
    • /
    • 2010
  • This study shows that frequency of tropical cyclone (TC) around Korea in summer (June-September) has positive relation with Arctic Oscillation (AO) in the preceding April. In a positive AO phase, each of anomalous cyclone and anomalous anticyclone is developed in low latitude and middle latitude regions of East Asia from the preceding April to summer. As a result, while anomalous southeasterly around Korea serves as a steering flow that TCs move toward this area is strengthened, northwesterly that reinforced in southeastern area of East Asia plays a role in preventing TCs from moving toward this area. In addition, due to this distribution of pressure systems developed in this AO phase, TCs tend to occur, move and recurve in further northeastern region in the western North Pacific than TCs in a negative AO phase. On the contrary, TCs in a negative AO phase mainly move westward toward southern China or Indochina Peninsula from Philippines. Eventually, intensity of TCs is weaker than those in a positive AO phase due to the terrain effect caused by high passage frequency of TCs in mainland China.

Characteristic of Typhoon and Changma in 2006 (2006년 태풍 특징과 장마)

  • Cha, Eun-Jeong;Lee, Kyung-Hi;Park, Yun-Ho;Park, Jong-Suk;Shim, Jae-Kwan;In, Hee-Jin;Yoo, Hee-Dong;Choi, Young-Jean
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.327-331
    • /
    • 2007
  • 23 tropical cyclones of tropical storm(TS) intensity or higher formed in the western North Pacific and the South China Sea in 2006. The total number is less than the 30-year $(1971{\sim}2000)$ average frequency of 26.7, Out of 23, 15 cyclones reached typhoon(TY) intensity, three severe tropical storm(STS) intensity, and five TS intensity. The tropical cyclone season in 2006 began in May with the formation of CHANCHU(0601). While convective activity was slightly inactive around the Philippines from late June to early August. In addition, subtropical high was more enhanced than normal over the south of Japan from May to early August. Consequently, most tropical cyclones formed over the sea east of the Philippines after late June, and many of them moved westwards to China. CHANCHU(0601), BILIS(0604), KAEMI(0605), PRAPIROON(0606) and SAOMI(0608) brought damage to China, the Philippines, and Vietnam. On the other hand, EWINIAR(0603) moved northwards and hit the Republic of Korea, causing damage to the country From late August to early September, convective activity was temporarily inactive over the sea east of the Philippines. However, it turned active again after late September. Subtropical high was weak over the south of Japan after late August. Therefore, most tropical cyclones formed over the sea east of the Philippines and moved northwards. WUKONG(0610) and SHANSHAN(0613) hit Japan to bring damage to the country. On the other hand, XANGSANE(0615) and CIMARON(0619) moved westwards in the South China Sea, causing damage to the Philippines, Thailand, and Vietnam. In addition, IOKE(0612) was the first namded cyclone formed in the central North Pacific and moved westwards across longitude 180 degrees east after HUKO(0224).

  • PDF

Relationship between Korean Peninsula Landfalling Tropical Cyclones and Interannual Climate Variabilities

  • Choi, Ki-Seon;Kim, Baek-Jo;Byun, Hi-Ryong
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.375-385
    • /
    • 2008
  • The relationship between two interannual climate variabilities and the frequency of tropical cyclone (TC) that landed over the Korean Peninsula (KP) has investigated for the period of 1951-2004. In the analysis of the relationship between KP-landfall TC frequency and the ENSO phase, most TCs of C-14 (TCs that do not pass through mainland China before landing the KP) and C-23 (TCs that pass through mainland China before landing the KP) tended to more land in the warm phase than normal and cold phases. However, TC intensity at landfall was stronger in the cold and normal phases. In the analysis of the relationship between KP-landfall TC frequency and Arctic Oscillation (AO) phase, the TCs of C-14 tended to more land in the positive (POS) phase of AO and the negative (NEG) phase of AO for C-23. It was found that AO index was negatively correlated with the Ni$\tilde{n}$o-3.4 index. And then the TCs of C-14 landed more frequently over the KP in the AO POS - Ni$\tilde{n}$o-3.4 NEG phases and in the AO NEG - Ni$\tilde{n}$o-3.4 POS phases for the TCs of C-23.

Status and Prospects of Marine Wind Observations from Geostationary and Polar-Orbiting Satellites for Tropical Cyclone Studies

  • Nam, SungHyun;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • Satellite-derived sea surface winds (SSWs) and atmospheric motion vectors (AMVs) over the global ocean, particularly including the areas in and around tropical cyclones (TCs), have been provided in a real-time and continuous manner. More and better information is now derived from technologically improved multiple satellite missions and wind retrieving techniques. The status and prospects of key SSW products retrieved from scatterometers, passive microwave radiometers, synthetic aperture radar, and altimeters as well as AMVs derived by tracking features from multiple geostationary satellites are reviewed here. The quality and error characteristics, limitations, and challenges of satellite wind observations described in the literature, which need to be carefully considered to apply the observations for both operational and scientific uses, i.e., assimilation in numerical weather forecasting, are also described. Additionally, on-going efforts toward merging them, particularly for monitoring three-dimensional TC wind fields in a real-time and continuous manner and for providing global profiles of high-quality wind observations with the new mission are introduced. Future research is recommended to develop plans for providing more and better SSW and AMV products in a real-time and continuous manner from existing and new missions.