• Title/Summary/Keyword: Trophoblasts

Search Result 25, Processing Time 0.022 seconds

Expressions of Norepinephrine Transporter in Pre-eclamptic Placenta (자간전증 태반에서의 Norepinephrine Transporter(NET) 발현)

  • Na, Kyu-Hwan;Lee, Hyun-Jung;Jung, Ji-Eun;Kim, Gi-Jin
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • Placenta has been shown to be a site of expression of several of the monoamine membrane uptake transporters. However, the correlation between the expressions of norepinephrine transporter (NET) and placental development including gynecological diseases is still unknown. To investigate the expression and functions of NET in placenta, we conducted to compare NET expression in normal and preeclamptic placenta and analyzed the function of NET in HTR8-SV/neo trophoblast cells after NET gene transfection. The expression of NET was analyzed in placental tissues from the following groups of patients (none underwent labor): 1) term normal placenta (n=15); 2) term with preeclamptic placeneta (n=15); and 3) pre-term with preeclamptic placenta (n=11) using semi-quantitative RT-PCR, immunohistochemistry, and Western blot. In order to evaluate the function of NET, NET gene plasmid and NET gene-specific siRNA were trnasfected into HTR-8/SVneo trophoblast cells for 24 hours. NET had low expression in the pre-eclamptic placenta compare with normal placenta but no difference in western blot data. NET was expressed in the trophoblasts, and the up-regulation of NET gene stimulated the invasion of HTR-8/SVneo trophoblast cells by 2.5 fold (p<0.05), whereas the NET-siRNA treatment reduced invasion rates. Also, we observed that the expression of NET induces to expression and activity of MMP-9 in HTR-8/SVneo trophoblast cells in zymography. The results suggest that the expression of NET were reduced in pre-eclampsia and should be inhibited invasion activity of trophoblasts. Therefore, these findings provide useful guidelines for the mechanisms of trophoblast invasion as well as for the basic understanding of gynecological diseases including pre-eclampsia.

A case of mucolipidosis II presenting with prenatal skeletal dysplasia and severe secondary hyperparathyroidism at birth

  • Heo, Ju Sun;Choi, Ka Young;Sohn, Se Hyoung;Kim, Curie;Kim, Yoon Joo;Shin, Seung Han;Lee, Jae Myung;Lee, Juyoung;Sohn, Jin A;Lim, Byung Chan;Lee, Jin A;Choi, Chang Won;Kim, Ee-Kyung;Kim, Han-Suk;Kim, Beyong Il;Choi, Jung-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.11
    • /
    • pp.438-444
    • /
    • 2012
  • Mucolipidosis II (ML II) or inclusion cell disease (I-cell disease) is a rarely occurring autosomal recessive lysosomal enzyme-targeting disease. This disease is usually found to occur in individuals aged between 6 and 12 months, with a clinical phenotype resembling that of Hurler syndrome and radiological findings resembling those of dysostosis multiplex. However, we encountered a rare case of an infant with ML II who presented with prenatal skeletal dysplasia and typical clinical features of severe secondary hyperparathyroidism at birth. A female infant was born at $37^{+1}$ weeks of gestation with a birth weight of 1,690 g (<3rd percentile). Prenatal ultrasonographic findings revealed intrauterine growth retardation and skeletal dysplasia. At birth, the patient had characteristic features of ML II, and skeletal radiographs revealed dysostosis multiplex, similar to rickets. In addition, the patient had high levels of alkaline phosphatase and parathyroid hormone, consistent with severe secondary neonatal hyperparathyroidism. The activities of ${\beta}$-D-hexosaminidase and ${\alpha}$-N-acetylglucosaminidase were moderately decreased in the leukocytes but were 5- to 10-fold higher in the plasma. Examination of a placental biopsy specimen showed foamy vacuolar changes in trophoblasts and syncytiotrophoblasts. The diagnosis of ML II was confirmed via GNPTAB genetic testing, which revealed compound heterozygosity of c.3091C>T (p.Arg1031X) and c.3456_3459dupCAAC (p.Ile1154GlnfsX3), the latter being a novel mutation. The infant was treated with vitamin D supplements but expired because of asphyxia at the age of 2 months.

Role of Trophobolast in Implantation and Placenta Development (착상 및 태반 발달과정에 따른 영양막세포의 역할)

  • Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.181-189
    • /
    • 2010
  • The placenta, which is a temporary organ derived from the fetus during pregnancy, is critical to support fetus development via optimal regulation between mother and fetus. Trophoblast as a major cell population of the placenta is one of the earliest to differentiate and shows an extensive proliferation or/and differentiation up to the formation of the placenta. The role of the trophoblast show dynamic changes from early embryo implantation to placentation during pregnancy. Implantation of the blastocyst into the endometrium of the maternal uterus is mediated by invasion of the differentiated trophoblast (e.g. syncytiotrophoblast) from the trophectoderm. During pregnancy, the unique role of the trophoblast is to invasion, eroding, and metastasizing in the placenta as well as to ensure appropriate bidirectional nutrient or waste flow required for growth and maturation of the embryo. The dysfunction of the trophoblast during pregnancy can result in several gynecological diseases including preeclampsia and congenital malformation in neonatal medicine. Therefore, trophoblasts act as a conclusive factor in placental and fetal development. This brief review outlines the classification of trophoblast and its function in the placenta during pregnancy. Also, we introduce the latest research in trophoblast for implantation and the placenta development, and the application potential of trophoblast for infertility and obstetrical diseases.

Does blastomere biopsy in preimplantation genetic diagnosis affect early serum ${\beta}$-hCG levels?

  • Cho, Yeon-Jean;Kim, Jin-Yeong;Song, In-Ok;Lee, Hyung-Song;Lim, Chun-Kyu;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Objective: To determine whether the serum ${\beta}$-human chorionic gonadotropin (hCG) profile following preimplantation genetic diagnosis (PGD) is lower than that of intracytoplasmic sperm injection (ICSI) cycles. Methods: A total of 129 PGD cycles and 1,161 age-matched ICSI cycles, which resulted in pregnancy (serum ${\beta}-hCG{\geq}5$ mIU/mL) on post-ovulation day (POD) 12 were included. We compared the mean serum ${\beta}$-hCG levels on POD 12, 14, 21, and 28, doubling time of serum hCG, and created a cut-off value for predicting a singleton pregnancy in each group. Results: The mean serum ${\beta}$-hCG concentration of the PGD group was significantly lower than that of the control group on POD 12, 14, and 21. The doubling time of serum ${\beta}$-hCG at each time interval showed no significant difference. The cut-off-value of serum ${\beta}$-hCG for predicting a single viable pregnancy was 32.5 mIU/mL on POD 12 and 113.5 mIU/mL on POD 14 for the PGD group, which was lower than that for the control group. Conclusion: Blastomere biopsy may decrease the ${\beta}$-hCG-producing activity of the trophoblasts, especially in early pregnancy. Setting a lower cut-off value of serum ${\beta}$-hCG for predicting pregnancy outcomes in PGD may be needed.

Activation of Phospholipase Cγ by Nitric Oxide in Choriocarcinoma Cell Line, BeWo Cells (Choriocarcinoma 세포주 BeWo 세포에서 nitric oxide에 의한 phospholipase Cγ 의 활성)

  • 차문석;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.849-855
    • /
    • 2003
  • Nitric oxide (NO) plays an important role as a signaling molecule in the proliferation of placenta trophoblasts. In this study, we investigated the effect of NO on the activation of phospholipase C (PLC) in BeWo cells, choriocar-cinoma cell line. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased $[^3H]$ thymidine incorporation of BeWo cells, indicating NO stimulates proliferation of the cells. NO-induced proliferation of BeWo cells was blocked by U73122, an inhibitor of PLC, suggesting that NO-induced PLC activation is involved in the cell proliferation. NO also stimulated extracellular signal-regulated kinase (ERK) in BeWo cells, indicated by increased phosphorylation of ERK1/2 in Western blotting using anti-phospho-ERK1/2 antibody. NO-induced phos-phorylation of ERK1/2 was not abrogated by U73122. $PLC\gamma_1$l but not$PLC\gamma_2$ was tyrosine phosphorylated by SNP in immunoprecipitation assay using anti-$PLC\gamma_1$/$PLC\gamma_2$ antibodies, and SNP-induced phosphorylation of $PLC\gamma_1$ was abrogated by pre-treatment of cells with genistein and PD98059, indicating that NO induced-phosphorylation of $PLC\gamma_1$ is mediated by ERK. These results suggest that NO stimulates the proliferation of BeWo cells through ERK and $PLC\gamma_1$.