• 제목/요약/키워드: Trophoblasts

검색결과 25건 처리시간 0.028초

Expression of the Novel Basic Helix-Loop-Helix Gene dHAND in Neural Crest Derivatives and Extraembryonic Membranes during Mouse Development

  • S.I Yun;Kim, S.K;Kim, S.K.;K.T Chang;B.H Hyun;D.S Son;Kim, M.K;D.S Suh
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.53-54
    • /
    • 2001
  • Expression of HAND genes in sympathetic adrenal lineage suggests that HAND genes may regulate Mash-I independent neuronal genes. HAND genes are also expressed in other cell types, e.g. Cardiac cells, trophoblasts, and decidua, suggesting that HAND genes are not cell fate determination factors. It is unclear how HAND genes function specifically in different types of cells. Combinational actions of HANDs with other cell-lineage specific transcription factor may determine each cell fate and differentiation processes. Identifying the transcription target genes of HANDs and Mash-I will be important to elucidate the function of these bHLH factors in SNS factors in SNS development. (omitted)

  • PDF

Prostaglandin F2α 투여(投與)에 의한 생쥐 태반(胎盤)의 조직학적변화(組織學的變化) (Histological Changes in Mouse Placenta Induced by Prostaglandin F2α)

  • 조성환;이차수
    • 대한수의학회지
    • /
    • 제19권2호
    • /
    • pp.91-97
    • /
    • 1979
  • This paper was carried out to observe prostaglandin $F_{2{\alpha}}$-induced morphological changes in the placenta. White mice received intramuscular injections of $PGF_{2{\alpha}}$(containing dinoprost tromethamine 0.5mg/ml, Upjohn Co.) in once or twice with doses of 0.1ml on 10th to 18th day of their respective pregnancies, the histological changes of the placentae and ovaries were observed with light microscope. Abortion within 21 to 51 hours following $PGF_{2{\alpha}}$ administration occurred in the pregnant mice. Vacuolization of trophospongial cells, giant cells and myometrium under decidua basalis, spherical acidophilic inclusion bodies of various sixtes in trophospongial cells and giant cells. hydropic degeneration and necrosis of labyrinthine trophoblasts and yolk cells, and infltration of neutrophils in the placenta and the uterus were observed. In addition, there were decrease in glycogen of the placental labyrinth and the visceral yolk sac, but increase in glycogen deposit of mesometrial myometrium. Atrophy and increase in number of large lipid droplets of the luteal cells and proliferation of fibroblasts were also recognized in the corpora lutea.

  • PDF

Rhox in mammalian reproduction and development

  • Lee, Sang-Eun;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권3호
    • /
    • pp.107-114
    • /
    • 2013
  • Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, ${\alpha}$, ${\beta}$, and ${\gamma}$ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into ${\alpha}$ (Rhox1-4), ${\beta}$ (Rhox5-9), and ${\gamma}$ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.

An overview of current knowledge about cell-free RNA in amniotic fluid

  • Jung, Yong Wook;Shin, Yun Jeong;Shim, Sung Han;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • 제13권2호
    • /
    • pp.65-71
    • /
    • 2016
  • Cell-free nucleic acids (cf-NAs) originate in trophoblasts and are detected in the maternal plasma. Using innovative bioinformatic technologies such as next-generation sequencing, cf-NAs in the maternal plasma have been rapidly applied in prenatal genetic screening for fetal aneuploidy. Amniotic fluid is a complex and dynamic fluid that provides growth factors and protection to the fetus. In 2001, the presence of cf-NA in amniotic fluid was reported. Amniotic fluid is in direct contact with the fetus and is derived from fetal urine and maternal and fetal plasma. Therefore, these genetic materials have been suggested to reflect fetal health and provide real-time genetic information regarding fetal development. Recently, several studies evaluated the global gene expression changes of amniotic fluid cell-free RNA according to gestational age. In addition, by analyzing the transcriptome in the amniotic fluid of fetal aneuploidy, potential key pathways and novel biomarkers for fetal chromosomal aneuploidy were identified. Here, we review the current knowledge of cell-free RNA in amniotic fluid and suggest future research directions.

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

Comparison of the Methods of Zona Pellucida Removal and Inner Cell Mass Isolation for the Generation of Parthenogenetic Embryonic Stem Cells in HanWoo Cattle

  • Kim, Dae-Hwan;Park, Sang-Kyu;Kim, Se-Woong;Jung, Yeon-Gil;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제26권2호
    • /
    • pp.111-115
    • /
    • 2011
  • In general, zona pellucida (ZP) of the blastocyst has to be removed first, then either isolated the inner cell mass (ICM) or ZP-removed whole blastocyst, which is then cultured on the feeder layer to induce ICM outgrowth for the generation of embryonic stem cells (ESC). However, it is unclear whether ICM isolation before seeding on feeder layer is beneficial or not because the interaction between ICM and trophoblasts may affect cellular growth and/or pluripotency during the culture on the feeder. In the present study, two ZP removal methods (mechanically by splitting with a 28-gauge needle versus chemically by the treatment of acid-Tyrode's solution) and two ICM isolation methods (ZP-free whole blastocyst seeding versus mechanical isolation of ICM) were evaluated for the efficient isolation and culture of putative parthenogenetic bovine ESC. The number of maintained outgrown colonies was counted in each experimental group. As the result, mechanical removal of ZP with a needle and followed by whole ZP-free blastocyst seeding on feeder cells tended to attach more on the feeder layer and resulted in more outgrown colonies with its simple and less time-costing benefits. Currently we are generating ESC lines in HanWoo cattle by using this method for initial outgrowth of the parthenogenetic bovine blastocysts.

ASCL2 Gene Expression Analysis and Its Association with Carcass Traits in Pigs

  • Cheng, H.C.;Zhang, F.W.;Deng, C.Y.;Jiang, C.D.;Xiong, Y.Z.;Li, F.E.;Lei, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1485-1489
    • /
    • 2007
  • Achaete-scute like 2 (ASCL2) gene encodes a member of the basic helix-loop-helix transcription factor which is essential for the maintenance of proliferating trophoblasts during placental development. ASCL2 gene preferentially expresses the maternal allele in the mouse. However, it escapes genomic imprinting in the human. In this study, the complete open reading frame consisting of 193 amino acids of ASCL2 gene was obtained. Sequence analysis indicated that a C-G mutation existed in the 3' region between Meishan and Large White pigs. The polymorphism was used to determine the monoallelic or biallelic expression with RT-PCR-RFLP in pigs of Large $White{\times}Meishan$ $F_1$ hybrids. Imprinting analysis indicated that the ASCL2 gene expression was biallelic in all the tested tissues (heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, fat, uterus, ovary and pituitary). PCR-RFLP was used to detect the polymorphism in 270 pigs of the "$Large\;White{\times}Meishan$" $F_2$ resource population. The statistical results showed highly significant associations of the genotypes and fat meat percentage (FMP), lean meat percentage (LMP) and ratio of lean to fat (RLF) (p<0.01), and significant associations of the genotypes and loin eye area (LEA) and internal fat rate (IFR) (p<0.05).

Effects of Epidermal Growth Factor and Insulin-like Growth Factor-I on Placental Amino Acids Transport Activities in Rats

  • Ono, Kenichiro
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.34-36
    • /
    • 2002
  • Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) have been shown to stimulate proliferation and differentiation of various somatic cells, including placental trophoblasts and also to enhance fetal growth and development when maternally administered. Since an increase of the expression of placental EGF and IGF-I receptors in rat, mouse, and human with the gestation advanced, both EGF and IGF-I were considered to play pivotal roles on fetal growth by regulating some function of placental cells. Amino acids are crucial importance for both maternal and fetal requirements of energy source and essential constituent of fetal mass during pregnancy. Impaired fetal and placental uptake of amino acids has been observed in several models of growth retardation in the rat. Amino acid is concentrated in the fetal side through active transport by amino acid transporters and is one of the important metabolic fuels for the fatal growth. Therefore, at first plasma amino acid concentrations in mothers and fetuses were measured as an index of uphill transport across the placenta associated with EGF and IGF-1. The EGF administration at the concentration of 0, 0.1, or 0.2 $\mu\textrm{g}$/g to pregnant rats from day 18 to 21 of gestation apparently increased fetal/maternal ratio of serum proline concentration and also fatal growth in EGF dose-dependent manner. When IGF-I in doses of 0, 1, 2, and 4 $\mu\textrm{g}$/g were administrated, the ratio of leucine, isoleucine, tryptophan, phenylalanine, tyrosine and also fetal growth significantly increased with a dose-dependent manner. These results suggested that EGF and IGF-I enhanced fatal growth by, as one of its possible mechanisms, promoting placental activity to transfer some amino acid supplies from the mother to the fetus in late pregnancy.

  • PDF

임신성 세포변화의 판독오류 - 임신 중 비정상 자궁목 세포검사의 분만 후 퇴행률에 미치는 영향 - (Misinterpretation of Pregnancy Related Changes - Effect on the Postpartum Regression Rate of Abnormal Cervical Smears in Pregnancy -)

  • 김혜선
    • 대한세포병리학회지
    • /
    • 제18권1호
    • /
    • pp.13-19
    • /
    • 2007
  • An aim of this study was to evaluate an effect of misinterpretation of pregnancy related cellular changes on the postpartum regression rate of abnormal cervical smears in pregnancy. A series of 265 cases with abnormal cervical smears in pregnancy were selected from a database of cervical smear results. The selected cases were classified as regression, persistence, and progression based on the results of postpartum cervical smears and histology. Of the selected cases, 162 cases were classified as regression and the postpartum regression rate was 61.1% (162/265). We reviewed abnormal cervical smears in pregnancy these cases. The primary cytologic diagnoses of these cases were ASCUS (118 cases), AGUS (2 cases), ASCUS/AGUS (1 case), LSIL (25 cases), LSIL R/O HSIL (2 cases), and HSIL (14 cases). With information of the pregnacy, we identified decidual cells in 24 cases, but cells identified by the Arias-Stella reaction and trophoblasts were not found. Sixteen cases out of 162 cases were reclassified as a pregnancy related change rather than an abnormal. Desidual cells were considered as ASCUS in 15 cases and as LSIL in one case. The revised postpartum regression rate was 55.5%(147/265) and was lower than the original. Consequently, misinterpretation of the pregnancy related cellular changes has an effect on a rise of the postpartum regression rate of the abnormal cervical smear in pregnancy. Pathologists may diagnose pregnancy related cellular changes as abnormal findings if they do not have information regarding the pregnancy. Therefore, clinical information of pregnancy and knowledge about the pregnancy related cellular changes are essential to prevent misinterpretation.