• Title/Summary/Keyword: Trophoblasts

Search Result 25, Processing Time 0.025 seconds

Effects of hypoxia inducible factors-$1{\alpha}$ on autophagy and invasion of trophoblasts

  • Choi, Jong-Ho;Lee, Hyun-Jung;Yang, Tae-Hyun;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • Objective: This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-$1{\alpha}$ on the cell death, autophagy, and invasion of trophoblasts. Methods: To understand the effect of HIF-$1{\alpha}$, we inhibited HIF-$1{\alpha}$ using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-$1{\alpha}$. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results: There was no difference in cell death through the inhibition of HIF-$1{\alpha}$ expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-$1{\alpha}$ expression by siRNA. These experimental results mean that HIF-$1{\alpha}$ genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion: This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-$1{\alpha}$ and autophagy.

Effect of Immortalization-Upregulated Protein-2 (IMUP-2) on Cell Death of Trophoblast

  • Jung, Ran;Choi, Jong Ho;Lee, Hyun Jung;Kim, Jin Kyeoung;Kim, Gi Jin
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • Trophoblasts, in the placenta, play a role for placental development as well as implantation in the early pregnancy. The characteristics and functions of trophoblast are identified by their localization and potency for proliferation, differentiation, and invasion. Thus, inadequate trophoblast cell death induces trophoblast dysfunction resulting in abnormal placental development and several gynecological diseases. Recently, it was reported that increased immortalization-upregulated protein-2 (IMUP-2) by hypoxia influences trophoblast apoptosis. However, IMUP-2 function on autophagy, which is type II programmed cell death remains unclear. In this study, we analyzed IMUP-2 expression in trophoblast cells (HTR8-SVneo) and compared IMUP-2 effects on cell death including apoptosis and autophagy in trophoblast regardless of IMUP-2 expression. Increased IMUP-2 in trophoblast by IMUP-2 gene transfection induces cell death, especially, apoptosis increases more than autophagy (p<0.05). However, the decreased IMUP-2 in trophoblasts after siRNA treatment decreased apoptosis with the decreased activities of caspase 3 and 7. The expressions of LC3 and MDC as an autophagosome makers and phosphorylated mTOR, which is a negative regulator for autophagy, increased. In addition, the S phase of cell cycle increased in trophoblasts when IMUP-2 expression decreased. Taken together, the alteration of IMUP-2 can control the balance between apoptosis and autophagy of trophoblasts resulting in functional involvement in placental development and in gynecological diseases by regulating the function of trophoblasts.

Effects of selenium on the survival and invasion of trophoblasts

  • Na, Jee Yoon;Seok, Jin;Park, Sohae;Kim, Jung Seok;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Objective: Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods: To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results: Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion: These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.

Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing

  • Zhou, Wenbo;Wang, Huiyan;Yang, Yuqi;Guo, Fang;Yu, Bin;Su, Zhaoliang
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.317-328
    • /
    • 2022
  • Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.

Differential expression of the metastasis suppressor KAI1 in decidual cells and trophoblast giant cells at the feto-maternal interface

  • Koo, Tae Bon;Han, Min-Su;Tadashi, Yamashita;Seong, Won Joon;Choi, Je-Yong
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.507-512
    • /
    • 2013
  • Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolin-mediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation.

Pathological, immunohistochemical, and bacteriological findings in dogs infected with Brucella canis

  • Jung, Ji-Youl;Yoon, Soon-Seek;Lee, Seunghee;Park, Jung-Won;Lee, JinJu;Her, Moon;So, ByungJae;Kim, Jae-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • This study describes pathological, immunohistochemical, and bacteriological findings in adult dogs and fetuses naturally infected with Brucella (B.) canis. A total of 42 dogs including 40 dogs and 2 aborted fetuses were examined. The most common gross lesions in infected dogs were swelling of lymph nodes and spleen. The testes showed marked swelling with multifocal to diffuse reddish discoloration. The most significant histopathological lesions were observed in the placenta. Placental trophoblasts were markedly hypertrophied due to the accumulation of intra-cellular gram-negative bacteria. Lymphocytic inflammation of varying severity was observed in the reproductive organs such as male testis, epididymis, and prostate gland and female uterus. Strong immunolabelling was observed in the cytoplasm of most trophoblasts in the placental tissues using immunohistochemistry. However, immunohistochemical staining did not demonstrate any organisms in other organs of dogs and fetuses. B. canis isolates were most frequently obtained from the whole blood (82.5%) and superficial inguinal lymph node (77.5%) in both sexes. In addition, the isolation rate was higher in male genital organs than in those of females. Hence, management of male dogs is most important because infected dogs can play a role as carriers.

Screening for down syndrome using trophoblast retrieval and isolation of the cervix: preliminary study

  • Lee, Min Jin;Kim, Soo Hyun;Park, Hee Jin;Shim, Sung Han;Jang, Hee Yeon;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.68-72
    • /
    • 2020
  • Purpose: Trisomy 21, the cause of Down syndrome (DS) with various medical problems, is the most common aneuploidy during the fetal period. For diagnosis, a non-invasive screening test using maternal blood, which cannot be confirmed and invasive confirmation test with a risk of miscarriage, may be performed. The trophoblast retrieval and isolation of the cervix (TRIC) have been proposed by some researchers as an alternative to overcome the limitations of current tests. We experimented using TRIC to identify the possibility of trisomy 21 for the first time in Asia. Materials and Methods: Three cases of DS were analyzed confirmed by invasive tests (chorionic villus sampling, amniocentesis). All samples of trophoblasts immediately were immersed in phosphate-buffered saline and processed with formalin for fixation. The trophoblasts were isolated using an anti-human leukocyte antigen-G antibody coupled to magnetic nanoparticles. β-human chorionic gonadotropin (hCG)-expressing cells were considered as trophoblast cells, and the detection rate calculated. DS was confirmed by fluorescence in situ hybridization (FISH). Results: The mean trophoblast detection rate using β-hCG was 78.1%, and the detection rate using FISH was 22.2%. In all cases, the trisomy of chromosome 21 was identified. Conclusion: Trophoblast can be obtained from the five weeks of gestation and has a high detection rate, so it is noted that it can replace the current prenatal genetic test. To realize the clinical application as a prenatal genetic test, we will need additional efforts to identify trisomy 21 as well as other chromosomal abnormalities in future large-scale studies.

Cytologic Features of Placental Site Trophoblastic Tumor - A Case Report of Cervico-vaginal Smear - (태반부 영양막세포 종양의 세포학적 소견 - 자궁경부질 도말 1예 보고 -)

  • Park, Hye-Rim;Lee, Yong-Woo;Park, Young-Euy
    • The Korean Journal of Cytopathology
    • /
    • v.4 no.2
    • /
    • pp.150-155
    • /
    • 1993
  • We report a case of placental site trophoblastic tumor with cytologic features of cervico-vaginal smear. The smear revealed several loose clusters of atypicai cells in slightly hemorrhagic and inflammatory background. Tumor cells were large in size and polyhedral to round with abundant cytoplasm Nuclei revealed consider-able variation in size, shape, and degree of chromatin clumping. Cytologically, it was difficult to differentiate from squamous cell carcinoma of uterine cervix. Curettage and hysterectomy specimen revealed typical histologic features of placental site trophoblastic tumor composed of intermediate type trophoblasts.

  • PDF