• Title/Summary/Keyword: Trophic model

Search Result 86, Processing Time 0.021 seconds

Biodynamic understanding of mercury accumulation in marine and freshwater fish

  • Wang, Wen-Xiong
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.15-35
    • /
    • 2012
  • Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methylmercury, MeHg), which is then transferred to humans through seafood consumption. Various biological and physiochemical conditions can significantly affect the bioaccumulation of Hg-including both its inorganic (Hg(II)) and organic (MeHg) forms-in fish. There have been numerous measurements of Hg concentrations in marine and freshwater fish worldwide. Many of these studies have attempted to identify the processes leading to variations of Hg concentrations in fish species from different habitats. The development of a biokinetic model over the past decade has helped improve our understanding of the mechanisms underlying the bioaccumulation processes of Hg in aquatic animals. In this review, I will discuss how the biokinetic modeling approach can be used to reveal the interesting biodynamics of Hg in fish, such as the trophic transfer and exposure route of Hg(II) and MeHg, as well as growth enrichment (the increases in Hg concentration with fish size) and biomass dilution (the decreases in Hg concentration with increasing phytoplankton biomass). I will also discuss the relevance of studying the subcellular fates of Hg to predict the Hg bioaccessibility and detoxification in fish. Future challenges will be to understand the inter- and intra-species differences in Hg accumulation and the management/mitigation of Hg pollution in both marine and freshwater fish based on our knowledge of Hg biodynamics.

Freshwater Fish Fauna and Ecological Health Assessment of the Agricultural Reservoirs in Jecheon City, Korea (제천시 농업용저수지의 어류상 및 생태건강성평가)

  • Han, Jeong-Ho;Kim, Jae Hwan;Lee, Sang-Bo;Paek, Woon-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.307-321
    • /
    • 2018
  • Fish fauna and lentic ecosystem health assessment in freshwater were analyzed in the two reservoirs (Uirim Reservoir(Ur) and Solbangjuk Reservoir(Sr)) of the Jecheon City during May-September 2017. Total numbers of the species and genus (7 family) sampled were 21 and 16, respectively. Cyprinidae was most dominant taxa, which accounted for 11 species (52.4%) of the total species, and the relative abundance, based on the number of individuals, was 318 individuals (46.2%). Subdominant families were taxa of Centrachidae (2 species; 264 ind. (38.4%). The dominant species, based on the relative abundance, were Squalidus chankaensistsuchigae(22.7%). Subdominant species were Lepomis macrochirus(19.5%, 134 ind.) and Micropterus salmoides(18.9%, 134 ind.). Trophic state index of Korea ($TSI_{KO}$), based on chemical oxygen demand (COD), total phosphorus (TP) and chlorophyll-a (CHL),ranged mesotrophic state. The purpose of this study was to apply a multi-metric model of Lentic Ecosystem Health Assessments (LEHA) for environmental impact assessments of two reservoirs and assessed the ecological health model values. Trophic composition's metrics showed that tolerant species (56.8%, 98.3%) and omnivore species (43.9%, 65.6%) dominated the fish fauna in the two reservoirs (Ur and Sr) of Jecheon City, indicating a biological degradation in the aquatic ecosystem. The relative proportions of Micropterus salmoides, also showed greater than 16.3% (Ur), 31.1% (Sr) of the total, indicating a ecological disturbance. The average value of LEHA model was 22 (Ur) and 12 (Sr) in the reservoirs, indicating a "poor condition (Ur)" and "very poor condition (Sr)" by the criteria of MOE (2014).

Alternative Nutrient Cycles for Terrestrial Plants, Positive Feedbacks through Detrital Processes, and Nutrient Use Efficiency (육상식물 중심의 영양소 순환 경로와 부식과정에 의한 양성 되먹임과정, 그리고 영양소 이용효율)

  • Lee, Dowon;Thomas P. Burns
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.115-131
    • /
    • 1993
  • Six nutrient cycles involving terrestrial plants are identified and characterized. Plants affect biotic and abiotic cycles through their effects on soil properties. They determine their internal nutritional status and nutrient concentrations in their environment via internal and external cycles. Contributions of organic matter to mycorrhizal, trophic, and detrital mediated external cycles and alterations of nutrient concentrations by plants can promote positive feedbacks leading to increased availability and retention of soil nutrients in open systems. Recognizing alternative cycles through plants leads to a definition of nutrient use efficiency for ecosystems: the ratio of system production to nutrient content of organic matter. A simple graph model to predict changes of nutrient use efficiency during primary succession is then presented.

  • PDF

Carrying Capacity and Fishery Resources Release in the Bangjukpo Surfzone Ecosystem (방죽포 쇄파대생태계의 수용력과 수산자원방류)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.669-675
    • /
    • 2003
  • To increase fishery resources in coastal waters, juvenile fish and bivalves are artificially released every year in Korea. This study provides a methodology to estimate an optimal release quantity based on the carrying capacity of the receiving basins. Carrying capacity was defined by E.p. Odum's theory of ecosystem development as the upper limit of biomass, where total system respiration equals total primary production. The Ecopath trophic ecological model was used to determine carrying capacity in the surfzone ecosystem of Bangjukpo on the southern coast of Korea. Using a top-down control method, various biomasses of fish groups were given to the simulation, with primary production constant and no catch. The results showed that biomass of selected fish groups increased by two orders of magnitude, yielding a five-fold increase in overall consumer biomass. The resultant values are 10 times higher than those estimated in open seas. This can be explained by higher primary production in the Bangjukpo surfzone ecosystem. This method can be used for strategic releases and ecosystem management, particularly when based on an ecological background.

Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific (ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성)

  • Lee, Joon-ho;Kim, Tae-hoon;Moon, Jae-hong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .

Preliminary Ecological Environmental Assessments of a Brooklet in Jeungchon (증촌 도랑의 생태환경 조사와 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.841-857
    • /
    • 2012
  • Preliminary ecological environmental assessments including physico-chemical constituents, water quality, fish fauna analysis, physical habitat health, and ecological health assessment were conducted as a primary step for Jeungchon micro-habitat ecosystem restoration in 2012. Water chemistry analysis of conductivity, dissolved oxygen, chlorophyll-a and etc. indicated that there were no significant differences(p < 0.05) among 6 sites between the headwaters and downstream. Multi-metric model analysis of Qualitative Habitat Evaluation Index(QHEI) showed that brooklets were at "good condition" as a mean QHEI of 158.7(n = 6) and the longitudinal differences of the model values between the sites were minor(QHEI range: 153 - 165). Total fish species and the number of individuals were 12 and 481, respectively, and dominant species were Zacco platypus(49.5%) and Zacco koreanus(36.8%). Tolerance guild analysis showed that the proportion of sensitive species($S_S$) had a negative linear function[$S_S=86.35-0.31(D_H)$; $R^2$ = 0.892, p < 0.01] with a distance from the headwaters, while the proportion of tolerant species($T_S$) had a positive linear function($R^2$ = 0.950, F = 90.28, p < 0.001) with the distance. Trophic feeding guild analysis showed that the proportion of insectivore species($I_n$) had a negative linear function($R^2$ = 0.934, p < 0.01) with a distance from the headwaters, while the proportion of omnivore species($O_m$) had a positive linear function($R^2$ = 0.958, p < 0.001) with the distance. Index of Biological Integrity(IBI) model, based on fish assemblages, showed a "fair condition" as a mean IBI of 23(n = 6), and there was a distinct differences of ecological health between the headwaters(S1 = 30; "good condition") and the downstreams(S6 = 14; "poor condition"). Overall, the preliminary environmental impact assessments suggest that water quality, physical habitat conditions(QHEI model), and ecological health(IBI model) were maintained well, even if the state was not an excellent conditions.

The Applications of a Multi-metric LEHA Model for an Environmental Impact Assessments of Lake Ecosystems and the Ecological Health Assessments (호수생태계 환경영향평가를 위한 LEHA 다변수 모델 적용 및 생태건강성 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.483-501
    • /
    • 2012
  • The purpose of this study was to apply a multi-metric model of Lentic Ecosystem Health Assessments(LEHA) for environmental impact assessments of Cheongpyung Reservoir during 2005 - 2006 and assessed the ecological model values. The ecosystem model of LEHA was composed of eleven metrics such as biological parameters($B_p$), physical parameters($P_p$), and chemical parameters($C_p$), and determined the rank of ecological health by the criteria. The variables of $B_p$ were metrics of % sensitive species($M_2$, NMS) and insectivore species($M_5$, % $I_n$), which decrease as the water quality degradates, and these metric values were low as 1.5% and 32.4%, respectively. In contrast, the proportions of tolerant species and omnivore species as the other $B_p$ parameters were 43% and 62%, respectively, which indicate a degradation and disturbance of the ecosystem. Riparian vegetation coverage($M_9$, % $V_c$) as a variable of $P_p$, were higher in the 2nd than 1st survey, and decreased toward the dam site from the headwaters. This was due to a habitat simplification(modifications) by frequent bottom dredging of sand and rocks. The variables of $C_p$ were two metrics of specific conductivity($M_{10}$, $C_I$) as an indicator of ionic contents(cations and anions) and the Trophic State Index(TSI) based on chlorophyll-a($M_{11}$, $TSI_{CHL}$) as an indicator of trophic state. These metric values of $C_p$ had high temporal variations, but low spatial variations on the main axis of the reservoir along with the ecological health of a good condition. The environmental impact assessments using the LEHA multi-metric model indicated that the model values of LEHA averaged 30.7 in 1st survey(fair - poor condition) vs. 28 in 2nd survey(poor condition), indicating a temporal variation of the ecological health. The model values of LEHA showed a minimum(28) in the lacustrine zone(S5) and ranged from 29 to 30 in the other locations sampled, indicating a low longitudinal variation. Overall, environmental impact assessments, based on LEHA model, suggest that chemical water quality conditions were in good, but biological conditions were disturbed due to habitat modifications by frequent dredgings in the system.

Preliminary Ecological Assessments of Water Chemistry, Trophic Compositions, and the Ecosystem Health on Massive Constructions of Three Weirs in Geum-River Watershed

  • Ko, Dae-Geun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Major objectives of the study were to analyze chemical and biological influences of the river ecosystem on the artificial weir construction at three regions of Sejong-Weir (Sj-W), Gongju-Weir (Gj-W), and Baekje-Weir (Bj-W) during 2008-2012. After the weir construction, the discharge volume increased up to 2.9 times, and biological oxygen demand (BOD) and electrical conductivity (EC) significantly decreased (p < 0.05). Also, the decrease of total phosphorus (TP) was also evident after the weir construction, but still hyper-eutrophic conditions, based on criteria by , were maintained. Multi-metric model of Index of Biological Integrity (IBI) showed that IBI values averaged 21.0 (range: 20-22; fair condition) in the Bwc, and 14.3 (range: 12-18; poor condition) in the Awc. The model values of IBI in Sj-W and Gj-W were significantly decreased after the weir construction. The model of Self-Organizing Map (SOM) showed that two groups (cluster I and cluster II) of Bwc and Awc were divided in the analysis based on the clustering map trained by the SOM. Principal Component Analysis (PCA) was similar to the results of the SOM analysis. Taken together, this research suggests that the weir construction on the river modified the discharge volume and the physical habitat structures along with distinct changes of some chemical water quality. These physical and chemical factors influenced the ecosystem health, measured as a model value of IBI.

Phosphorus Budget of a River Reservoir, Paldang (하천형 호수인 팔당호의 인 수지)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

Fish Species Compositions and the Application of Ecological Assessment Models to Bekjae Weir, Keum-River Watershed (금강 수계 백제보에서 어류의 종 특성 평가 및 생태평가모델 적용)

  • Moon, Seong-Dae;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.731-741
    • /
    • 2015
  • The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, $B_{WC}$) but became more like lentic-lotic hybrid system after the construction (2011, $A_{WC}$). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction ($A_{WC}$), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.