• Title/Summary/Keyword: Trophic factors

Search Result 76, Processing Time 0.027 seconds

Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem

  • Kim, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • The present study was designed to characterize the bioaccumulation of organochlorine pesticides (OCPs) in marine organisms (zooplankton, oyster, crab, and goby) on different trophic level. In the present study, sedentary bivalve (oyster) showed strong correlations in OCPs levels with surface sediment in the study area. This indicates the two compartments can be used as alternative for pollution monitoring of OCPs even in narrow scale in space. Bioaccumulation and trophic transfer of OCPs was strongly associated with their hydrophobicity (i.e., KOW). HCHs with log KOW < 5 did not show any enrichment through food-chain. However, log BAF values of OCPs with log KOW > 5 positioned over the 1:1 lines of log BAF and log KOW of the top predator, indicating the greater fugacities in the higher trophic level and thus the occurrence of biomagnification via ingestion. Based on trophic transfer factors (TTF), more hydrophobic OCPs with log KOW > 5 were enriched by several to several ten times in the highest trophic level relative to the lowest trophic level. This finding can be used in the establishment of marine environmental water quality criteria by considering biomagnification factors (TTF in this study) of OCPs.

Water Quality Assessment for Reservoirs using the Korean Trophic State Index (한국형 부영양화 지수를 이용한 저수지 수질평가)

  • Kim, Eungseok;Sim, Kuybum;Kim, Sangdan;Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • Man-made reservoirs over 95% in Korea are shallower than 10 meters in depth, which is apt to cause eutrophication. This study has characterized long-term trends in water quality factors for the selected six reservoir points in the Kum River watersheds, and then estimated the seasonal trophic state index for each reservoir. The reservoir trophic state was evaluated at four trophic levels using the Korean trophic state index, TSIKO. It is observed from seasonal results for six reservoirs that the highest value of the trophic state index is estimated in summer while the trophic state index value is low in spring and winter seasons. Especially, the Boryeong Lake has a relatively lower trophic state index since this reservoir has been managed properly for water withdrawal and irrigation. It is expected that the seasonal trophic state index resulted from this study can contribute toward long-term water quality improvement plans for reservoirs.

Estimation of Nutrient Loading and Trophic States in a Coastal Estuary

  • Bach, Quang-Dung;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.337-346
    • /
    • 2011
  • We investigated nutrient loading and trophic states in a coastal estuarine system in the Asan estuary by assessing phytoplankton biomass and using the trophic index (TRIX). The monthly and yearly nutrient loading (TN, TP) from freshwater discharge from the Asan and Sapgyo reservoirs into the estuary were estimated and analyzed with related factors. Monitoring data (physio-chemical and biological variables) collected at five estuary stations were used to assess trophic states. Descriptive statistics of total phytoplankton cells, chl a concentrations and primary productivity were also used to assess seasonal trophic status. N loading from freshwater ranged $1.0{\sim}1.3{\times}10^4$ ton yearly. The yearly P loading ranged between 350 and 400 ton during 2004~2006, increasing to 570 ton in 2007. Regression results suggest that DIN and DSi were correlated with freshwater discharge at the upper region. Based on phytoplankton biomass and total cell abundance, the trophic state of the estuary was found to be eutrophic during spring due to phytoplankton bloom. Primary productivity level was remarkably high, especially in summer coinciding with high nutrient loading. Pheopigments increased during warm seasons, i.e. summer and fall. Trophic index results indicate that the trophic state varied between mesotrophic and eutrophic in the estuary water body, especially in the upper region. The results suggest that phytoplankton production was regulated by nutrient loading from freshwater whereas biomass was affected by other properties than nutrient loading in the Asan Estuary ecosystem.

Seasonal Water Quality Analysis in Daecheong Lake by Eutrophication Assessment Methods (부영양화 평가 방법에 따른 계절별 대청호의 수질분석)

  • Kim, Eungseok;Sim, Kuybum;Yang, Sangyong;Yoon, Johee;Kal, Byungseok;Son, InOok;Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2012
  • This study has evaluated the trophic state in Daecheong Lake by Carlson (1977) method, Aizaki (1981) method, Yang and dickman (1993) method, and Korean trophic state index method. For estimating the trophic state index from each analysis method we use water quality factors such as COD, TN, TP, Chl-a, and SD provided by the water information system and the ministry of environment. The seasonal lake trophic state results denote the mesotrophic state lake from Carlson (1977) method, Aizaki (1981) method, and Korean trophic state index method and the high relation between Carlson (1977) method and Aizaki (1981) method with the coefficient of determination $R^2$ greater than 0.9 for all the seasons. Although Korean trophic index method has relatively weak relation to other methods with the coefficient of determination $R^2$ ranging from 0.419 to 0.701, we propose that Korean trophic index method is suitable for use in domestic lakes since Korean trophic index results show the similar periodicity and tendency with other method results. Hence, Korean trophic index method incorporating domestic lake characteristics is expected to can contribute to seasonal water quality management measures in lakes.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Water Quality Assessment using Trophic Status Index and Attached Diatom Index in 10 Reservoirs including Ye-dang Reservoir of Chungcheongnam-do (충남 예당저수지를 포함한 10개 저수지의 영양단계 및 부착규조지수를 이용한 수질평가)

  • Song, Mi-Ae;Kim, Ji-Won;Kim, Hun-Nyun;Kong, Dong-Soo;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.155-171
    • /
    • 2011
  • The research assessed water quality using physico-chemical factors, trophic status index and attached diatom index in 10 reservoirs located in Chungcheongnam-do from October 2007 to June 2008. The physico-chemical water quality assessments revealed that Dangjin-gun (St. 1~5), which displayed a high chemical oxygen demand (V and VI) and chlorophyll-${\alpha}$ (Eutrophic-Hypereutrophic), was more polluted than Yesan and Cheongyang-gun. The sample were also hypereutrophic [trophic status index (TSI) 74.6] and ${\beta}$-mesosaprobic [diatom assemblage index to the organic water pollution (DAIpo) 44.47]. Yesan and Cheongyang-gun. Which were mid-level in their pollution status, were eutrophic (TSI 56.9) and ${\alpha}$-oligosaprobic (DAIpo 60.11). TSI correlated strongly with the attached diatom index (of DAIpo 0.60~0.62, and trophic diatom index of 0.72~0.74). Hence, the attached diatom index can be used with the trophic status assessment of lakes using TSI, and lake trophic status index (LTSI).

Protective Effect of Trophic Factor Supplementation on Cold Ischemia/Rewarming Injury to Kidney Cells (Trophic factor supplementation에 의한 cold ischemia/rewarming손상으로 부터의 신장 세포 보호)

  • Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.25 no.5
    • /
    • pp.355-358
    • /
    • 2008
  • The aim of this study was to investigate whether trophic factor supplementation (TFS) enhance the survival of kidney cell during cold ischemic storage and rewarming. The effect of TFS on the phosphorylation of p44/42 and p38 mitogen activated protein kinases (MAPK) signaling pathway was determined by Western blot. Apoptotic changes after cold ischemic storage and rewarming was determined by 4',6'-diamino-2-phenylindole (DAPI) staining. The cell viability was evaluated by live assay. TFS significantly decreased p44/42 and p38 MAPK activity induced by cold ischemic injury and rewarming (p < 0.05). The number of apoptotic cells was decreased after 5 minute rewarming in the presence of TFS. TFS significantly increased the cell viability after 5 minute rewarming (p < 0.05). Therefore, it was concluded that trophic factor supplementation protects kidney tubule cells from cold ischemic and rewarming injury via the inhibition of p44/42 and p38 MAPK activation and reducing apoptotic change.

Evaluating Coastal Eutrophication: Trophic State Trends in Jinhae Bay, South Korea (2020-2023) (연안 부영양화 평가: 한국 진해만의 최근 영양 상태(2020-2023))

  • Kwanwoo Kim;Sujin Na;Jongwan Kang;Su-mi Lee;Minkyu Choi;Jae-Hyun Lim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.397-409
    • /
    • 2024
  • To evaluate the recent trophic state of Jinhae Bay, field campaigns were conducted in June and August during 2020-2023, measuring environmental factors in both the surface and bottom layers. Temperature differences between layers were greater in August than in June. Surface salinity was decreased in August, probably due to runoff, while bottom salinity remained stable. Dissolved oxygen levels showed a more pronounced stratification in August, leading to hypoxic conditions in the bottom layer. Chemical oxygen demand (COD) was higher at the surface, with rainfall contributing to elevated levels. The eutrophication index (EI) was consistently higher at the bottom across all stations, driven by dissolved inorganic nitrogen (DIN) and phosphate (DIP), with a notable increase in August due to organic matter decomposition. The trophic index (TRIX) was also higher in the bottom layer, with surface TRIX influenced by DIN and salinity, and bottom TRIX by salinity, rainfall, COD, and DIN. The average TRIX for Jinhae Bay was 4.21±1.30, classified as "poor", but comparable to values from other regions. Continuous monitoring of the trophic state is essential for the sustainable management of Jinhae Bay's fisheries.

Dynamics of Phytoplankton Community and the Physico-chemical Environmental Factors in Youngchun Dam (영천댐의 식물플랑크톤 군집과 환경요인의 동태)

  • Kim, Sook-Chan;Kim, Han-Soon
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.227-234
    • /
    • 2004
  • A study on the dynamics of phytoplankton community and the physico-chemical environmental factors was performed biweekly from April 1998 to March 1999 in Youngchun Dam. A total 72 phytoplankton taxa was identified and dominant taxa were blue-green algae and diatoms. The highest value of phytoplankton standing crop (24,826cells·ml$^{-1}$) was observed in September 7, 1998, the blooming period of blue-green algae Phormidium sp., while the lowest (318cells·ml$^{-1}$) was measured in June 18, 1999. The phytoplankton communities were dominated by blue-green algae of Anabaena planktonica, Microcystis aeruginosa and Phormidium sp. during the summer and autumn periods and were dominated by diatoms of Synedra acus and Aulacoseira spp. during the spring and winter periods. Secchi disc transparency, chlorophyll-a, total nitrogen, total phosphorus and silicate concentration were varied in the ranges of 0.4-2.5 m, 2.4-32.2mg·m$^{-1}$, 0.845-2.352mg·l$^{-1}$, 0.005-0.093mg·l$^{-1}$, 0.2-15.7mg·l$^{-1}$, respectively. The trophic status of Youngchun Dam were estimated eutrophic according to Lake Trophic States Index (LTSI).

Water Environmental Factors and Trophic States in Lake Daecheong (대청호의 수질 환경요인과 영양단계 평가)

  • Park, Jong-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.382-392
    • /
    • 2005
  • Data were collected in Lake Daecheong from March 1997 to October 2002 and used to understand an annual change of water environmental factors and trophic states. The surface water temperature was ranged from $3.2^{\circ}C$ to $33.1^{\circ}C$ In the middle of February, water temperature was the lowest. Turbidity was ranged from 0.1 to 203.5 NTU, but the values of above 30 NTU were only measured at site 1. The total mean values of COD and Chl a were $3.6{\pm}1.4\;mg\;O_2\;L^{-1}$, $9.3{\pm}12.8\;{\mu}g\;L^{-1}$respectively. The concentrations of TP and TN were ranged from 0.14 to 5.09 mg N $L^{-1}$, 1 to $247\;{\mu}g\;P\;L^{-1}$ respectively. The total mean value of TN/TP ratio was $98.7{\pm}56.2$. The trophic states were ranged from mesotrophic to eutrophic in Lake Daecheong.