• Title/Summary/Keyword: Trophic State

Search Result 145, Processing Time 0.025 seconds

Water Quality Assessment for Reservoirs using the Korean Trophic State Index (한국형 부영양화 지수를 이용한 저수지 수질평가)

  • Kim, Eungseok;Sim, Kuybum;Kim, Sangdan;Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • Man-made reservoirs over 95% in Korea are shallower than 10 meters in depth, which is apt to cause eutrophication. This study has characterized long-term trends in water quality factors for the selected six reservoir points in the Kum River watersheds, and then estimated the seasonal trophic state index for each reservoir. The reservoir trophic state was evaluated at four trophic levels using the Korean trophic state index, TSIKO. It is observed from seasonal results for six reservoirs that the highest value of the trophic state index is estimated in summer while the trophic state index value is low in spring and winter seasons. Especially, the Boryeong Lake has a relatively lower trophic state index since this reservoir has been managed properly for water withdrawal and irrigation. It is expected that the seasonal trophic state index resulted from this study can contribute toward long-term water quality improvement plans for reservoirs.

Influence of Seasonal Monsoon on Trophic State Index (TSI), Empirical Water Quality Model, and Fish Trophic Structures in Dam and Agricultural Reservoirs (계절적 몬순에 의한 댐 인공호 및 농업용 저수지에서의 영양상태지수(TSI), 경험적 수질 모델 및 어류 트로픽 구조)

  • Yun, Young-Jin;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1321-1332
    • /
    • 2014
  • The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nurnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of $R^2$ : 0.76-0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, $R^2=0.70$) up to 70% by TP during the Po season. The eutrophication tendency, based on the $TSI_{TP}$ vs. $TSI_{N:P}$ were predictable ($R^2$ ranged 0.85-0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, $TSI_{N:P}$ vs. $TSI_{CHL}$ had a monsoon seasonality in relation to values of $TSI_{N:P}$ during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.

Suggestion for Trophic State Index of Korean Lakes (Upper Layer) (한국 호소 상층부의 영양상태지수 제안)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.340-351
    • /
    • 2019
  • In this study, the relationship between trophic state indices was analyzed based on the monthly or weekly water quality data of 81 lakes (mostly man-made) in Korea between 2013-2017. Carlson's $TSI_C$ and Aizaki's $TSI_m$ were calculated using the summer (Jun.-Sep.) average data at the upper water layer. The previous Korean trophic state index ($TSI_{KO}$) and the newly suggested index ($TSI_{KON}$) was calculated using the annual average data at the whole layer and at the upper layer, respectively. While previous trophic state index (TSI) such as Carlson's TSI included logarithmic function, we devised newly Monod-type $TSI_{KON}$(Chl) that is 50 when half-saturation concentration of chlorophyll ${\alpha}$ ($Chl.{\alpha}$) measured by UNESCO-method is $10{\mu}gL^{-1}$. MMF-type $TSI_{KON}$(TP) was derived based on the relationship between TP and $Chl.{\alpha}$. A comprehensive $TSI_{KON}$ was decided as the larger one of the two $TSI_{KON}$ values. The range of previous TSI was usually 40-50 for the mesotrophic state, which seemed narrow to discriminate trophic characteristics of the class. The upper limits of $TSI_{KON}$ for oligotrophic, mesotrophic, and eutrophic state were set to 23, 50 and 75, respectively. Classification by $TSI_C$ and $TSI_m$ showed higher frequency of eutrophic class compared to $TSI_{KO}$ and $TSI_{KON}$. This means that the estimation by TSIs developed in foreign natural lakes can lead to distorted results in the classification of the trophic state of Korean lakes. This is due to the decrease of transparency by non-algal material and the reduction in phosphorus availability to algal growth, particularly in Monsoon period.

Suggestion for Trophic State Classification of Korean Lakes (우리나라 호소의 영양상태 분류에 관한 제언)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.248-256
    • /
    • 2019
  • Most of the lakes in Korea are artificial, and their limnological characteristics are significantly different from those of natural lakes in other countries. In this study, the relationship between trophic state parameters was investigated, based on summer average data of the upper layer, in 81 lakes in Korea, 2013-2017. Compared with trends of foreign natural lakes, chlorophyll a (Chl.a) concentration was slightly lower at the same total phosphorus (TP) concentration, and transparency (Secchi depth, SD) was noticeably lower at the same Chl.a concentration. This is because of excessive allochthonous loading of non-algal material during the monsoon period, and the reduction in phosphorus availability to algal growth, by light limitation and short hydraulic residence time. Considering these characteristics, we suggested site-specific thresholds of trophic state classification for Chl.a, TP and SD, based on annual average data at the upper layer of lakes ($3-10{\mu}g\;L^{-1}$ of Chl.a measured by UNESCO method; $13-33{\mu}g\;L^{-1}$ of TP; 1.6-3.2 m of SD for mesotrophic state class, respectively). The threshold value of TP for each trophic state class, corresponded to the upper value of previously reported range, and that of SD was out of the range. We suggested applying only TP and Chl.a in assessment of trophic state of lakes in Korea, excluding SD.

Seasonal Water Quality Analysis in Daecheong Lake by Eutrophication Assessment Methods (부영양화 평가 방법에 따른 계절별 대청호의 수질분석)

  • Kim, Eungseok;Sim, Kuybum;Yang, Sangyong;Yoon, Johee;Kal, Byungseok;Son, InOok;Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2012
  • This study has evaluated the trophic state in Daecheong Lake by Carlson (1977) method, Aizaki (1981) method, Yang and dickman (1993) method, and Korean trophic state index method. For estimating the trophic state index from each analysis method we use water quality factors such as COD, TN, TP, Chl-a, and SD provided by the water information system and the ministry of environment. The seasonal lake trophic state results denote the mesotrophic state lake from Carlson (1977) method, Aizaki (1981) method, and Korean trophic state index method and the high relation between Carlson (1977) method and Aizaki (1981) method with the coefficient of determination $R^2$ greater than 0.9 for all the seasons. Although Korean trophic index method has relatively weak relation to other methods with the coefficient of determination $R^2$ ranging from 0.419 to 0.701, we propose that Korean trophic index method is suitable for use in domestic lakes since Korean trophic index results show the similar periodicity and tendency with other method results. Hence, Korean trophic index method incorporating domestic lake characteristics is expected to can contribute to seasonal water quality management measures in lakes.

Assessment of Trophic State of Large Reservoir for Agriculture in Kum River Basin Using Remote Sensing (원격탐사를 이용한 금강수계 대형 농업용 저수지의 영양상태 평가)

  • Kim, Tae Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.1 s.17
    • /
    • pp.19-25
    • /
    • 2001
  • Satellite remote sensing, with its synoptic coverage, is used to evaluate the trophic state of large reservoir for agriculture in Kum River basin. The prediction model for chlorophyll-${\alpha}$ which was derived from Daecheong reservoir was applied to four LANDSAT TM imageries to generate a distribution map of trophic state. The chlorophyll-${\alpha}$ model was found to be reasonably reliable predictors for average trophic state value of reservoir. LANDSAT TM imagery data appears to have great utility in assessing trophic state of reservoir.

  • PDF

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Trophic State Index (TSI), Spatial Gradient Characteristics and the Empirical Models for Eutrophication Evaluations in Daecheong Reservoir (대청호 수질오염 평가를 위한 부영양도 지수산정, 공간적 구배 특성 및 경험적 모델)

  • Kwon, Hyuk-Hyun;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1537-1549
    • /
    • 2014
  • The objectives of this study were to analyze reservoir trophic state, based on Trophic State Index (TSI), spatial variation patterns of three zones (riverine, transition, and lacustrine zone), and empirical models through 20-years long-term data analysis. Trophic variables of TP and CHL-a were highest during the summer monsoon, and decreased along the main axis from the riverine to lacustrine zone. In the mean time, TN did not show the trend. Ratios of N:P and Secchi disc transparency (SD) increased from the riverine to lacustrine zone. The analysis of trophic state index (TSI) showed that mean TSI (TP) and TSI (CHL-a) were 62 and 57, respectively, and these values were highest in the transition zone during the summer. This zone should be managed well due to highest lake water pollution. The analysis of Trophic State Index Deviation (TSID) showed that algal growth was primarily limited by light penetration, and this was most pronounced in the monsoon season. The analysis of empirical models showed that the value of $R^2$, based on CHL-SD model, was 0.30 (p < 0.0001) in the transition zone and the $R^2$, based on TP-SD model, was 0.41 (p < 0.0001) in the transition zone.

Estimation of Nutrient Loading and Trophic States in a Coastal Estuary

  • Bach, Quang-Dung;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.337-346
    • /
    • 2011
  • We investigated nutrient loading and trophic states in a coastal estuarine system in the Asan estuary by assessing phytoplankton biomass and using the trophic index (TRIX). The monthly and yearly nutrient loading (TN, TP) from freshwater discharge from the Asan and Sapgyo reservoirs into the estuary were estimated and analyzed with related factors. Monitoring data (physio-chemical and biological variables) collected at five estuary stations were used to assess trophic states. Descriptive statistics of total phytoplankton cells, chl a concentrations and primary productivity were also used to assess seasonal trophic status. N loading from freshwater ranged $1.0{\sim}1.3{\times}10^4$ ton yearly. The yearly P loading ranged between 350 and 400 ton during 2004~2006, increasing to 570 ton in 2007. Regression results suggest that DIN and DSi were correlated with freshwater discharge at the upper region. Based on phytoplankton biomass and total cell abundance, the trophic state of the estuary was found to be eutrophic during spring due to phytoplankton bloom. Primary productivity level was remarkably high, especially in summer coinciding with high nutrient loading. Pheopigments increased during warm seasons, i.e. summer and fall. Trophic index results indicate that the trophic state varied between mesotrophic and eutrophic in the estuary water body, especially in the upper region. The results suggest that phytoplankton production was regulated by nutrient loading from freshwater whereas biomass was affected by other properties than nutrient loading in the Asan Estuary ecosystem.

Assessment of Trophic State for Daecheong reservoir Using Landsat TM Imagery Data (Landsat TM 영상자료를 이용한 대청호의 영양상태 평가)

  • Han, E.J.;Kim, K.T.;Jeong, D.H.;Cheon, S.Y.;Kim, S.J.;Yu, S.J.;Hwang, J.Y.;Kim, T.S.;Kim, M.H.
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 1998
  • The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.

  • PDF