• 제목/요약/키워드: TrkB receptor

검색결과 19건 처리시간 0.029초

Caspase Cleavage of Receptor Tyrosine Kinases in the Dependence Receptor Family

  • Gyu Hwan Park;Yoo Kyung Kang;Seung-Mann Paek;Chan Young Shin;Sun-Young Han
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.359-369
    • /
    • 2023
  • Dependence receptors are a group of receptor proteins with shared characteristics of transducing two different signals within cells. They can transduce a positive signal of survival and differentiation in the presence of ligands. On the other hand, dependence receptors can transduce an apoptosis signal in the absence of ligands. The function of these receptors depends on the availability of their ligands. Several receptor tyrosine kinases (RTKs) have been reported as dependence receptors. When cells undergo apoptosis by dependence receptors, the intracellular domain of some RTKs is cleaved by the caspases. Among the RTKs that belong to dependence receptors, we focused on eight RTKs (RET, HER2, MET, ALK, TrkC, EphA4, EphB3, and c-KIT) that are cleaved by caspases. In this review, we describe the features of the receptors, their cleavage sites, and the fate of the cleaved products, as well as recent implications on them being used as potential therapeutics for cancer treatment.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.

Treadmill exercise enhances motor coordination and ameliorates Purkinje cell loss through inhibition on astrocyte activation in the cerebellum of methimazole-induced hypothyroidism rat pups

  • Shin, Mal-Soon;Kim, Bo-Kyun;Lee, Shin-Ho;Kim, Tae-Soo;Heo, Yu-Mi;Choi, Jun-Ho;Kim, Chang-Ju;Lim, Baek-Vin
    • 운동영양학회지
    • /
    • 제16권2호
    • /
    • pp.73-84
    • /
    • 2012
  • Thyroid hormones are important for the development of the brain including the cerebellum. In the present study, we investigated the effect of treadmill exercise on the survival of Purkinje neurons and the activation of astrocytes in the cerebellar vermis of hypothyroidism-induced rat pups. On the day of perinatal 14, pregnant rats were divided into two groups (n = 5 in each group): the pregnant control group and the pregnantmethimazole (MMI)-treated group. For the induction of hypothyroidism in the rat pups, MMI was added to the drinking water (0.02% wt/vol), from the day of perinatal 14 to postnatal 49. After delivery, male rat pups born from the pregnant control group were assigned to the control group. Male rat pups born from the MMI-treated group were divided into the hypothyroidism-induction group, the hypothyroidism-induction with treadmill exercise group, and the hypothyroidism-induction with thyroxine (T4) treatment group (n = 10 in each group). The rat pups in the exercise group were forced to run on a treadmill for 30 min once a day for 4 weeks, starting on postnatal day 22. In the hypothyroidism-induced rat pups, motor coordination was reduced and Purkinje cell death and reactive astrocytes in the cerebellar vermis were increased. Treadmill exercise enhanced motor coordination, increased the survival of Purkinje neurons, down-regulated reactive astrocytes, and enhanced brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) expressions in the hypothyroidism-induced rat pups. These results suggest that treadmill exercise has beneficial effects in terms of protecting against thyroid dysfunction by increasing T3 and T4 and the related protein, BDNF, as well as TrkB, inhibition on astrocyte activation and the reduction of Purkinje cell loss regarding the cerebellum in hypothyroidism rat pups.

Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권3호
    • /
    • pp.191-200
    • /
    • 2014
  • We investigated the anxiolytic-like activity of ${\alpha}$-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.

Regulation of BDNF release in dopaminergic neurons

  • 전홍성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

신경세포에서 신경성장인자(nerve growth factor)의 조절에 미치는 천문동(Asparagus cochinchinensis) 열수추출물의 영향 (Effects of an Aqueous Extract of Asparagus cochinchinensis on the Regulation of Nerve Growth Factor in Neuronal Cells)

  • 이현아;김지은;송성화;성지은;정민기;김동섭;손홍주;이충열;이희섭;황대연
    • 생명과학회지
    • /
    • 제26권5호
    • /
    • pp.509-518
    • /
    • 2016
  • 천문동(Asparagus cochinchinensis)은 북아시아 지역에서 열병, 감기, 신장질환, 유방암, 염증질환, 뇌질환 등의 치료에 오랫동안 사용되어온 약용식물(medicinal plant)이다. 비록, 천문동의 항염증(ani-inflammatory) 효능에 대한 일부 연구들이 수행되었지만, 신경세포에서 항염증작용과 신경성장인자(nerve growth factor, NGF)의 연관성에 대한 연구는 수행된바 없다. 따라서, 본 연구에서는 신경세포에서 신경성장인자의 분비와 작용기전에 대한 천문동 열수추출물(aqueous extract from A. cochinchinensis, AEAC)의 영향을 연구하였다. AEAC로 처리된 B35세포의 배양액에 NGF단백질의 농도는 대조물질(vehicle) 처리군에 비하여 유의적으로 증가하였으며, 특별한 독성은 관찰되지 않았다. 또한, NGF mRNA의 발현도 단백질의 농도변화와 유사한 양상을 나타내었다. 더불어, B35세포로부터 분비된 NGF의 생리활성을 확인하기 위해, AEAC-조정배지(conditioned medium)를 미분화된 PC12세포에 처리한 후 이들 세포의 신경염성 성장(neuritic outgrowth)을 관찰하였다. PC12세포의 수상돌기 길이(dendritic length)는 vehicle처리군에 비하여 AEAC-조정배지처리군에서 유의적으로 증가하였다. 또한, High affinity NGF 수용체의 하위신호전달에 포함된 p-TrkA와 p-ERK의 발현은 AEAC-조정배지처리군에서 높았지만, low affinity NGF 수용체의 하위신호전달에서는 낮은 수준으로 관찰되었다. 이러한 결과는 AEAC가 신경세포에서 NGF발현과 분비의 조절에 기여하기 때문에 신경퇴행성질환(neurodegenerative disease) 치료제로서 우수한 후보물질임을 제시하고 있다.

SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향 (Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.501-512
    • /
    • 2020
  • 제주조릿대 잎은 항염, 해열 및 이뇨작용을 가지고 있어 위궤양, 목마름 및 토혈 치료를 위한 민간의약으로 사용되어 왔다. 본 저자들은 제주조리대 잎에서 분리한 피토케미칼 풍부 추출물(PRE)과 그 에틸아세테이트 분획물(EPRE)은 여러 위암 세포주에서 세포사멸을 유도하는 항암 효과가 있다고 보고한 바 있다. 본 연구는 EPRE의 세포사멸 유도 기전에 관여하는 분자표적들을 탐색하기 위하여 EPRE을 처리한 SNU-16 세포에서 mRNA와 microRNA (miRNA)의 프로파일 변화를 분석하였다. RNA sequencing 분석을 통해 총 2,875개의 차등적으로 발현되는 유전자들(DEGs)을 동정하였다. 유전자 온톨로지(GO)와 KEGG 경로 분석 결과, EPRE는 세포사멸, 유사 분열-활성화 단백질 키나제(MAPK) 및 염증 반응, 종양 괴사 인자(TNF) 신호 전달 및 암 경로에 관여하는 유전자들의 발현을 조절하는 것으로 나타났다. 단백질-단백질 상호 작용(PPI) 네트워크 분석으로 세포사멸 및 세포죽음과 관련된 유전자들 간의 상호작용들을 확인할 수 있었다. 그리고, miRNA sequencing 분석을 통해 총 27개의 차별적으로 발현되는 miRNAs (DEMs)를 동정하였다. GO와 KEGG 경로 분석 결과, EPRE는 세포주기, 세포사멸 및 tropomyosin-receptor-kinase (TRK) 수용체 신호 전달, 성장인자-β(TGF-β), 핵인자 κB (NF-κB) 및 암 경로에 관여하는 miRNAs의 발현을 조정하였다. 본 연구결과는 EPRE의 항암 효과의 근본적인 메커니즘에 대한 통찰력을 제공한다.

Whole body hypoxic preconditioning-mediated multiorgan protection in db/db mice via nitric oxide-BDNF-GSK-3β-Nrf2 signaling pathway

  • Li, Yuefang;Huang, Yan;Cheng, Xi;He, Youjun;Hu, Xin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.281-296
    • /
    • 2021
  • The beneficial effects of hypoxic preconditioning are abolished in the diabetes. The present study was designed to investigate the protective effects and mechanisms of repeated episodes of whole body hypoxic preconditioning (WBHP) in db/db mice. The protective effects of preconditioning were explored on diabetes-induced vascular dysfunction, cognitive impairment and ischemia-reperfusion (IR)-induced increase in myocardial injury. Sixteen-week old db/db (diabetic) and C57BL/6 (non-diabetic) mice were employed. There was a significant impairment in cognitive function (Morris Water Maze test), endothelial function (acetylcholine-induced relaxation in aortic rings) and a significant increase in IR-induced heart injury (Langendorff apparatus) in db/db mice. WBHP stimulus was given by exposing mice to four alternate cycles of low (8%) and normal air O2 for 10 min each. A single episode of WBHP failed to produce protection; however, two and three episodes of WBHP significantly produced beneficial effects on the heart, brain and blood vessels. There was a significant increase in the levels of brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) in response to 3 episodes of WBHP. Moreover, pretreatment with the BDNF receptor, TrkB antagonist (ANA-12) and NO synthase inhibitor (L-NAME) attenuated the protective effects imparted by three episodes of WBHP. These pharmacological agents abolished WBHP-induced restoration of p-GSK-3β/GSK-3β ratio and Nrf2 levels in IR-subjected hearts. It is concluded that repeated episodes of WHBP attenuate cognitive impairment, vascular dysfunction and enhancement in IR-induced myocardial injury in diabetic mice be due to increase in NO and BDNF levels that may eventually activate GSK-3β and Nrf2 signaling pathway to confer protection.

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.