• Title/Summary/Keyword: TrkB

Search Result 36, Processing Time 0.017 seconds

Effect of ginseng and ginsenosides on attention deficit hyperactivity disorder: A systematic review

  • Yunna Kim;Ik-Hyun Cho;Seung-Hun Cho
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.437-448
    • /
    • 2024
  • Attention deficit hyperactivity disorder (ADHD) is a rapidly increasing neurodevelopmental disorder but currently available treatments are associated with abuse risk, side effects, and incomplete symptom relief. There is growing interest in exploring complementary options, and ginseng has gained attention for its therapeutic potential. This systematic review aimed to assess current evidence on the efficacy of ginseng and its active components, ginsenosides, for ADHD. Eligible studies were identified through searches of PubMed, Embase, Cochrane Library, and Web of Science, up to June 2023. The inclusion criteria included both human and animal studies that investigated the effects of ginseng or ginsenosides on ADHD. The risk of bias was assessed according to study type. Six human studies and three animal studies met the inclusion criteria. The results suggest that ginseng and ginsenosides may have beneficial effects on ADHD symptoms, particularly inattention, through dopaminergic/norepinephrinergicmodulation and BDNF/TrkB signaling. Ginseng and ginsenosides have promising potential for ADHD treatment. Due to limitations in evidence quality, such as the risk of bias and variability in study designs, larger controlled studies are essential. Integrating ginseng into ADHD management may have valuable implications for individuals seeking well-tolerated alternatives or adjunctive therapies.

Effects of an Aqueous Extract of Asparagus cochinchinensis on the Regulation of Nerve Growth Factor in Neuronal Cells (신경세포에서 신경성장인자(nerve growth factor)의 조절에 미치는 천문동(Asparagus cochinchinensis) 열수추출물의 영향)

  • Lee, Hyun Ah;Kim, Ji Eun;Song, Sung Hwa;Sung, Ji Eun;Jung, Min Gi;Kim, Dong Seob;Son, Hong Joo;Lee, Chung Yeoul;Lee, Hee Seob;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.509-518
    • /
    • 2016
  • Asparagus cochinchinensis is a medical plant that has long been used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although several studies have been conducted on the anti-neuroinflammatory effects of A. cochinchinensis, the correlation between these effects and nerve growth factor (NGF) has not yet been examined. In this study, we investigated the effects of an aqueous extract of A. cochinchinensis (AEAC) on the secretion and action mechanism of NGF in neuronal cells. The concentration of the NGF protein in the supernatant collected from cultured cells increased significantly in B35 cells treated with AEAC in comparison with the vehicle-treated group without any specific cytotoxicity. Furthermore, the mRNA expression of NGF showed a very similar pattern to its protein concentration. To examine the bioactivity of NGF secreted from B35 cells, undifferentiated PC12 cells were cultured in an AEAC-conditioned medium and neuritic outgrowth was observed. The dendrite length of PC12 cells in the AEAC-treated group was significantly higher than that in the vehicle-treated group. Moreover, the level of the downstream effectors p-TrkA and p-ERK of the high-affinity NGF receptor was significantly higher in the AEAC-treated group, while the expression of the downstream effectors of the low-affinity NGF receptor was significantly lower in the same group. These results suggest that AEAC may contribute to the regulation of NGF expression and secretion in neuronal cells; it is therefore an excellent candidate for further investigation as a therapeutic drug for neurodegenerative diseases.

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.

Whole body hypoxic preconditioning-mediated multiorgan protection in db/db mice via nitric oxide-BDNF-GSK-3β-Nrf2 signaling pathway

  • Li, Yuefang;Huang, Yan;Cheng, Xi;He, Youjun;Hu, Xin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.281-296
    • /
    • 2021
  • The beneficial effects of hypoxic preconditioning are abolished in the diabetes. The present study was designed to investigate the protective effects and mechanisms of repeated episodes of whole body hypoxic preconditioning (WBHP) in db/db mice. The protective effects of preconditioning were explored on diabetes-induced vascular dysfunction, cognitive impairment and ischemia-reperfusion (IR)-induced increase in myocardial injury. Sixteen-week old db/db (diabetic) and C57BL/6 (non-diabetic) mice were employed. There was a significant impairment in cognitive function (Morris Water Maze test), endothelial function (acetylcholine-induced relaxation in aortic rings) and a significant increase in IR-induced heart injury (Langendorff apparatus) in db/db mice. WBHP stimulus was given by exposing mice to four alternate cycles of low (8%) and normal air O2 for 10 min each. A single episode of WBHP failed to produce protection; however, two and three episodes of WBHP significantly produced beneficial effects on the heart, brain and blood vessels. There was a significant increase in the levels of brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) in response to 3 episodes of WBHP. Moreover, pretreatment with the BDNF receptor, TrkB antagonist (ANA-12) and NO synthase inhibitor (L-NAME) attenuated the protective effects imparted by three episodes of WBHP. These pharmacological agents abolished WBHP-induced restoration of p-GSK-3β/GSK-3β ratio and Nrf2 levels in IR-subjected hearts. It is concluded that repeated episodes of WHBP attenuate cognitive impairment, vascular dysfunction and enhancement in IR-induced myocardial injury in diabetic mice be due to increase in NO and BDNF levels that may eventually activate GSK-3β and Nrf2 signaling pathway to confer protection.

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.

Effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) and Electrical Acupuncture on the Spinal Nerve Injury and the Motor Function (양혈장근건보탕(養血壯筋健步湯)과 전침의 병용치료가 손상된 척수신경 및 운동기능에 미치는 영향)

  • Sul, Jae-Uk;Chu, Min-Kyu;Kim, Sun-Jong;Choi, Jin-Bong;Shin, Mi-Suk;Kim, Soo-Ik
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.1-25
    • /
    • 2009
  • Objectives : The purpose of this study was to investigate the effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang, YGKT) and electrical acupuncture treatment in spinal cord injury(SCI)-induced rats. Methods : The subjects were divided into 5 groups ; Normal, Control-no treatment after SCI, Experimental I(Exp. I)-taken with YGKT 500 mg/kg $0.5m{\ell}$ daily after SCI. Experimental II(Exp. II)-taken with electrical acupuncture after SCI and Experimental III(Exp. III)-taken with YGKT 500 mg/kg $0.5m{\ell}$ and electrical acupuncture after SCI. After each operation, the present author observed cytological changes, the motor behavior recovery and nerve regeneration by analysis of the motor behavior tests, EMG, hematological(AST, ALT, WBC), histological and immunological changes. Rats were tested by Motor behavior test at 1st, 3rd, 7th, 14th and 21st day. Results : 1. All the experimental groups were improved compared with control group in the motor behavior tests including Tarlov test, Basso-Beattle-Bresnahan locomotor rating scale, modified inclined plane test, open field test, grid walk test and narrow beam test. Especially Exp. III was significantly improved among other groups. 2. In EMG test, H and M wave were significantly increased in Exp. III. 3. All the experimental groups were significantly decreased compared with control group in AST, ALT and WBC. 4. NGF, BDNF and Trk B of spinal cord gray matter in all the experimental groups were increased compared with control group. Especially, Exp. III was more effective. 5. In histological observations, muscle contraction and denaturation of gastrocnemius muscle of all the experimental groups were inhibited. Especially, those of Exp. III was more effective. On the observations of liver and kidney, cell atrophy and apoptosis of all the experimental groups were decreased compared with control group. Especially, those of Exp. III was more effective. Conclusions : It can be suggested that YGKT and electrical acupuncture may improve motor behavior, EMG, hematological, histological and immunological findings in SCI-induced rats. Especially, combination of these two treatments will be somewhat better in spinal nerve recovery and motor function improvement.