• Title/Summary/Keyword: TritonX-l00

Search Result 7, Processing Time 0.018 seconds

Structural Stability of Bacteriorhodopsin Solubilized by Triton X-100

  • Sasaki, Takanori;Sonoyama, Masashi;Mukai, Yuri;Nakazawa, Chieko;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.293-295
    • /
    • 2002
  • The structural stability of bacteriorhodopsin (bR) solubilized by Triton X-100 (TX-100) was studied by measuring the denaturation kinetics in the dark and under illumination, and compared with the structural stability of bR solubilized by octyl-${\beta}$-glucoside (OG). In the dark, bR solubilized by TX- 100 was more stable than bR solubilized by OG. Under illumination, bR solubilized by TX-100 showed light-induced denaturation in the same manner as bR solubilized by OG. These results in the dark well correlated with the experimental results of the visible CD band. Although solubilized bR in the TX-100 concentration range of 2-50 mM showed almost identical positive CD band and did not denature in the dark at 35$^{\circ}$C, the kinetic constant of the photobleaching increased with the increase of TX-100 concentration. These results suggested that photo-intermediates of solubilized bR are destabilized by TX-100 micelles.

  • PDF

Rheological Properties of a Novel High Viscosity Polysaccharide, A49-Pol, Produced by Bacillus polymyxa

  • Kim, Seon-Won;Ahn, Seung-Gu;Seo, Weon-Taek;Kwon, Gi-Seok;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.178-181
    • /
    • 1998
  • An exopolysaccharide, designated as A49-Pol, was produced from Bacillus polymyxa KCTC 8648P in nitrogen sufficient conditions. The viscosity of the culture broth increased up to $2\times10^4$cP in 38 hours of culture and then decreased to $1.5\times10^4$CP at 48 hours. The $1.0\%$ (w/v) solution of purified A49-Pol represented pseudoplasticity with a viscosity of $2.7\times10^4$cP which was two times higher than xanthan at the same concentration. The viscosity of the A49-Pol solution was also greatly affected by its concentration in comparison with the xanthan solution. The viscosity of $1.0\%$ A49-Pol solution was 930-fold higher than its $0.2\%$ solution, whereas the corresponding viscosities of xanthan solution experienced only l7-fold difference. The viscosity was observed to be maximum at pH 7.0 in both A49-Pol and xanthan solutions, and gradually decreased as the pHs of the polysaccharide solutions went to acidic or alkaline regions. The viscosity of A49-Pol solution was very sensitive to temperature compared to xanthan and decreased with increasing temperature. The viscosity of $0.6\%$ solution of A49-Pol was 8,100 cP at $10^{\circ}C$ and 55 cP at $50^{\circ}C$. The viscosity was also affected by the presence of surfactants such as Span 20 and Triton X-l00 ; with $0.5\%$ Triton X-l00 (v/v), the viscosity of A49-Pol solution increased by $50\%$.

  • PDF

Toxicity Estimation of Nonionic Surfactants and Their Effect on the Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) (비이온계 계면활성제의 독성 평가 및 Polycyclic Aromatic Hydrocarbons(PAHs) 생분해에 미치는 영향)

  • Park, Jong-Sup;Kim, In S.;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2107-2113
    • /
    • 2000
  • Toxicity estimation of three nonionic surfactants (Brij 30, Tween 80, Triton X-lOO) and their effect on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and soil slurry phase were investigated. Brij 30 was found to be the most biodegradable among the surfactants tested, and showed no substrate inhibition up to a concentration of 1.5 g/L. It was definitely utilized as a carbon source by the microorganisms. Naphthalene and phenanthrene in the aqueous phase were completely degraded by phenanthrene-acclimated cultures within 60 hours, but a substantial amount of naphthalene was lost due to the volatilization. The limiting step in the soil slurry bioremediation was bioavailablity by the microorganisms in the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry. TOC analysis revealed that most of substrates including surfactant in the reactor were degraded. pH transition indicated that phenanthrene was metabolized into intermediates containing acid function.

  • PDF

Enhancement of Succinate Production by Organic Solvents, Detergents, and Vegetable Oils

  • Kang, Kui-Hyun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • Bioconversion of fumarate to succinate by Enterococcus sp. RKY1 was enhanced when Tween surfactant, organic solvent, and vegetable oil were added to the fermentation medium. The maximum amount of succinate produced was 80.4 g/l after a 24 h incubation when Tween 80 was added to the culture to a final concentration of 0.1 g/l. Triton X-l00 was observed to damage the enzymes and inhibit the formation of succinate. The addition of 10 ml/l acetone increased the production of succinate by 110%. Vegetable oils used were found to be effective for succinate production as well as for the cell growth. Similar productivity increases were obtained with corn oil and Tween 80 plus biotin with the total productivity being 3.6 g/l/h, and 3.5 g/l/h, respectively, which was approximately 25% greater than that of the control. Therefore, these results indicate that com oil can be considered the most appropriate agent for the production of succinate where succinic acid was primarily used in the production of food, medicine, and cosmetics.

  • PDF

Optimal Surfactant Screening by Model Application for Soil Washing Process (오염토양 세척공정에서 모델링을 통한 최적 계면활성제의 선별)

  • 우승한;박종문
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • A model describing the distribution of contaminants in soil/water systems for the application of soil-washing technology using surfactant was developed. The model simulation was conducted for screening the best surfactant, evaluating the effect of water dose, and optimizing soil-washing methodology. Naphthalene, phenanthrene, and pyrene as target compounds and Triton X-l00, Tergitol NP-10, Igepal CA-720, and Brij 30 as surfactants were used in the model simulations. The washing efficiency was not greatly enhanced by increasing water dose with the same total surfactant dose. The approach of successive washings was more efficient than a single washing with the same amount of water and surfactant. Equal allotment of the amount of water and surfactant was the best condition for the successive washings. The model can be applied for the optimal design of the soil washing process without extra experimental efforts.

Purification and Characterization of Poly(3-hydroxybutyrate) Depolymerase from a Fungal Isolate, Emericellopsis minima W2

  • Rhee, Young-Ha;Kim, Do-Young;Yun, Ji-Hye;Kim, Hyung-Woo;Bae, Kyung-Sook
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.129-133
    • /
    • 2002
  • The fungus, Emericellopsis minima W2, capable of degrading poly(3-hydroxybutyrate) (PHB) was isolated from a waste water sample. Production of the PHB depolymerase from E. minima W2 (PhaZ/ sub Emi/) was significantly repressed in the presence of glucose. PhaZ/ sub Emi/ was purified by column chromatography on Octyl-Sepharose CL-4B and Sephadex G-100. The molecular mass of the PhaZ/ sub Emi/), which consisted of a single polypeptide chain, was estimated to be 48.0 kDa by SDS-PAGE and its pI vague was 4.4. The maximum activity of the PhaZ/ sub Emi/ was observed at pH 9.0 and 55$\^{C}$. It was significantly inactivated by 1mM dithiothreitol, 2mM diisopropyl fluorphosphate, 0.1mM Tween 80, and 0.1 mM Triton X-l00, but insensitive to phenylmethylsulfonyl fluoride and N-ethylmaleimide. The PhaZ/ sub Emi/ efficiently hydrolyzed PHB and its copolyester with 30 mol% 3-hydroxyvalerate, but did not act on poly(3-hydroxyoctanoate). It also hydrolyzed p-nitrophenylacetate and p-nitrophenylbutyrate but hardly affected the longer-chain forms. The main hydrolysis product of PHB was identified as a dimer of 3-hydroxybutyrate.

A Comparative Analysis of Whole Blood Cadmium by Atomic Absorption Spectrophotometry with a Graphite Furnace (흑연로 원자흡수분광법에 의한 혈액중 카드뮴 정량분석)

  • Park, Jong An;Oh, Hye Jeong;Lee, Jong Hwa
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.301-312
    • /
    • 1996
  • This study was performed to search a optimal analyzing method of cadmium in whole-blood. Cadmium was determined by graphite furnace atomic absorption spectrometry(GFAAS). We investigated the effect of ashing temperature on the absorbance of cadmium in a simple dilution(ten-fold) method with triton X-100 and matrix modifier methods treated with $NH_4H_2PO_4$(1 and 3%) and $Pd(NO_3)_2$(0.00l and 0.005%) as matrix modifier. We also compared the reported reference values of standard blood with values resulted from optimal analyzing conditions of this study. In case of a simple dilution method, when ashing temperature was set at $450^{\circ}C$, the absorbance of sample and background were $0.334{\pm}0.012$ and $1.382{\pm}0.245$, respectively. Background level was higher than the value(0.8) that can be corrected by $D_2$ background correction method. As ashing temperature was rised to $500^{\circ}C$, the absorbance of sample and background were $0.178{\pm}0.008$ and $0.711{\pm}0.223$ respectively. The higher ashing temperature($450^{\circ}C-650^{\circ}C$) was, the lower the absorbance of sample was. In case of a matrix modifier method with $NH_4H_2PO_4$(1 and 3%), when ashing temperature was rised from $500^{\circ}C$ to $650^{\circ}C$, the absorbance of sample slightly changed. The absorbances of sample at $600^{\circ}C$ were $0.230{\pm}0.017$ and $0.137{\pm}0.012$, respectively. These values were larger than that of simple dilution method. But the absorbance of background was higher than the level that can be corrected by $D_2$ method. In case of a matrix modifier method with $Pd(NO_3)_2$(0.001 and 0.005%), the absorbance of sample and background were higher than those of other methods and were stable and reproducible. When ashing temperature was over $550^{\circ}C$, the absorbance of sample was significantly decreased. In case of 0.005% $Pd(NO_3)_2$ carbon residue remained in graphite tube affected the absorbance of sample and background. From these results, We propose that in case of a simple dilution(ten-fold) method with triton X-100 ashing temperature must be maintained below $400^{\circ}C$. In order to diminish the absorbance of background, the alternative method is attenuation of injection volume or multiplication of dilution ratio. We recommend $Pd(NO_3)_2$ than $NH_4H_2PO_4$ as a matrix modifier. In case of a matrix modifier method with $Pd(NO_3)_2$ ashing temperature might be maintained below $550^{\circ}C$.

  • PDF