• Title/Summary/Keyword: Triton X -100

Search Result 320, Processing Time 0.031 seconds

Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134

  • Bakir, Zehra Burcu;Metin, Kubilay
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1087-1097
    • /
    • 2016
  • An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50℃. The enzyme was stable between pH 6.0 and 11.0 at 25℃, 40℃, and 50℃ for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg2+, Fe3+, Pb2+, Al3+, and Zn2+ strongly inhibited the enzyme whereas Li+, Na+, K+, and NH4+ slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position.

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli

  • Kim, Tae Ryeon;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.401-406
    • /
    • 1995
  • The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.

Biochemical Properties of Acetylcholinesterase from the Larval Head of Bombyx mori

  • Lee, Hwa-Jun;Lee, Heui-Sam;Lee, Pyeong-Jae;Cho, Il-Je;Lee, Sang-Mong;Moon, Jae-Yu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.1
    • /
    • pp.73-78
    • /
    • 2000
  • We investigated some biochemical properties of acetylcholinesterase (AChE) in the Bombyx mori larval head. 1% Triton X-100 (v/v) was suitable for extracting AChE from the silkworm larval head but 1 M NaCl was not suitable. PAGE analysis showed a single band of AChE that was detected by histochemical staining using acetylthiocholine as a substrate. AChE was also partially purified with Sepharose 6B and DEAE-cellulose column. Finally, the specific activity of partially purified enzyme solution was 7.6. The study on inhibitor specificity indicated that the enzyme under study was a true cholinesterase (ChE) or AChE. AChE activity was maximum at the substrate concentration of $5{\times}10^{-4}$ M and the excess substrate inhibited the AChE activity. The optimal pH and temperature were pH 7.0-9.0 and 30-35$^{\circ}C$.

  • PDF

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Purification and Characterization of the Red Carotenoprotein from the Skin of Ascidian, Halocynthia roretzi 1. Purification and Characterization of the Caritenopritein (멍게껍질로부터 분리제정한 적색 Carotenoprotein의 특성 1. Carotenoprotein 의 정제 및 특성)

  • Kang, Ok-Ju;Suh, Myung-Ja;Lee, An-Jong;Kim, Se-Kwon
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.170-180
    • /
    • 1995
  • A carotennnoprotein from the skin of Ascidian(Halocynthia roretzi) was extracted by Triton X-100 and purified by ammonium sulfate fraction, SephadexG-200 charomatography and DEAE-cellulose ion exchange chromatography. The carotenoprotein was redwith broad $\lambda$$_{max}$ between 495, 467 and 318nm. The red carotenoprotein had an approximate molecular weight of 326KDa(gel filtration). SDS-PAGE indicated the presence of two polypeptodes of 84.1KDa and 74.4KDa, with different mobility in polyacrylamide gel electrophoresis. In the presence of denaturing agents such as organic solvent aand extreme pH, the red complex readily disociates to liberate the yellow carotenoid($\lambda$$_{max}$ 452nm) and a colourless apoprotein. The amino acid composition of carotenoprotein were mainly threonine(15.2%), aspartic acid(12.2%), glutamic acid(11.9%) and serine(9.6%), while proline was not found. The carotenoprotein consisted of lipids as structure units. Its major fatty acids composion were C$_{18:1}$, C$_{16:1}$, and C$_{16:0}$. The monounsaturated fatty acids(41.5%) contained abundant content compared to other fatty aacids(polyunsaturated fatty acids 37.4%, saturated fatty acids 20.6%).

  • PDF

Effect of Micelles on the Reaction of RuBPCase in Maize Leaf (옥수수 잎의 RuBPCase 반응에 미치는 미셀들의 영향)

  • 김의락;김현묵
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.325-331
    • /
    • 1994
  • PGA is formed in a route of CO2 fixation of RuBP catalyzed by RuBPCase, followed by reduction of the PGA by NADH to GAP This reduction is enhanced in an anionic micellar solution(SDS), in which NADH is distributed in the aqueous and the micellar pseudophases in a given ratio. This micellar bounded NADH reacts to PGA, and in higher micellar concentration than $1.25{\times}10^{-2}M$, most of NADH is oxidized to NAD+ by PGA. On the other hand, in the solutions of the positive ionic(CTABr), zwitter ionic(Chaps) and nonionic (Brij and Triton X-100) micelles, the reactions are also enhanced and the concentrations of NADH reach minima with micellar concentrations. Such minima are typical of micellar catalyzed bimolecular reactions, and the fall in concentrations of the reductant followed by a gradual increase is charataristic of reactions of hydrophobic substrates: that is, the reductions of PGA by NADH are sharply enhanced in a range of the lower micellar concentrations, and NADH amounts in ca. $1.25-2.50{\times}10^{-3}M$ micellar solutions are reached to minima, followed by gradual increases of the reductant concentration.

  • PDF

Production and Characterization of Extracellular Phospholipase D from Streptomyces sp. YU100

  • Lim, Si-Kyu;Choi, Jae-Woong;Chung, Min-Ho;Lee, Eun-Tae;Khang, Yong-Ho;Kim, Sang-Dal;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • Using Streptomyces sp. YU100 isolated from Korean soil, the fermentative production of phospholipase D was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, glucose and yeast extract were found to be the best. By varying the concentration of nutrients and calcium carbonate, the optimal culture medium was determined as 2.0% glucose, 1.5% yeast extract, 0.5% tryptone 0.3% calcium carbonate. During cultivation, the strain secreted most of the phospholipase D in the early stage of growth within 24 h. The phospholipase D produced in the culture broth exhibited hydrolytic activity as well as transphosphatidylation activity on lecithin (phosphatidylcholine). In particular, the culture broth showed 8.7 units/ml of hydrolytic activity when cultivated at $28^{\circ}C$ for 1.5 days. The phospholipase D was purified using 80% ammonium sulfate precipitation and DEAE-Sepharose CL-6B column chromatography, which produced a major band of 57 kDa on a 10% SDS-polyacrylamide gel with purity higher than 80%. The enzyme showed an optimal pH of 7 in hydrolytic reaction, and at pH 4 in a transphosphatidylation reaction. The enzyme activity increased until the reaction temperature was elevated to $60^{\circ}C$. The enzyme was relatively stable at high temperatures and neutral pH, but significantly unstable in the alkaline range. Among the detergents tested as emulsifiers of phospholipids, the highest enzyme activity was observed when 1.5% Triton X-100 was employed. However, no inhibitory effect by metal ions was detected. Under optimized reaction conditions, the purified enzyme not only completely decomposed PC to phosphatidic acid within 1 h, but also exhibited higher than 80% conversion rate of PC to PS by transphosphatidylation within 4 h.

IDENTIFICATION OF PUTATIVE PATHOGENS IN ACUTE ENDODONTIC INFECTIONS BY PCR BASED ON 16S rDNA (중합효소연쇄반응법을 이용한 급성 치수 및 치근단 질환의 병원성 세균의 동정)

  • Kim, Ji-Hoon;Yoo, So-Young;Lim, Sun-A;Kook, Joong-Ki;Lim, Sang-Soo;Park, Seul-Hee;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.178-183
    • /
    • 2003
  • The purpose of this study was to investigate the frequency of 7 putative pathogens in endodontic infections. The specimens were collected from infected pulpal tissue of patients who were referred for root canal treatment to the department of conservative dentistry, Chosun University Samples were collected aseptically using a barbed broach and a paper point. The cut barbed broaches and paper points were transferred to an eppendorf tube containing 500 ml of 1 X PBS. DNAs were extracted from the samples by direct DNA extraction method using lysis buffer (0.5% EDTA, 1% Triton X-100). Identification of 7 putative pathogens was performed by PCR based on 16S rDNA. The target species were as follows : Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Bacteroides forsythus, Actinobacillus actinomycetemcomitans, and Treponema denticola. Our data revealed that the prevalence of P. endodontalis was found in 88.6% (39/54), P. ginivalis 52.3% (23/44), P. nigrescens 18.2% (8/44), P intermedia 15.9% (7/44) B. forsythus 18.2% (8/44), A. actinomycetemcomitans 3.3% (1/44), T. denticola 25% (l1/44) of the samples. The high prevalence of P. endodontalis and P. ginivalis suggests that they may play an important role in the etiology of endodontic infections.

Magnetic Orientations of Bull Sperm Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kumianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper describes the magnetic orientation of the intact and demembranated bull sperm treated by DTT or heparin in a 5,400 G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4{^{\circ}C}$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the sperm head area at 1, 3, and 6 days. After measuring the area, each sperm sample was exposed to a 5,400 G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the decondensation of bull sperm nuclei was not induced by the heparin treatment, however, incomplete decondensation was induced by the DTT treatment. During the magnetic orientation, bull sperms treated by DTT or heparin had low percentages of long axis perpendicular to the magnetic lines of force. However, different aspects were obtained for long axis perpendicular orientations following treatment of DTT or heparin. Through the DTT treatment, the decline of long axis perpendicularly oriented percentages was due to the increase of long axis parallel orientation with the head of the flat plane perpendicular to the magnetic lines of force, whereas, using the heparin treatment, the decline of long axis perpendicular orientation was due to the increment of long axis parallel orientation with the head of the flat plane parallel to the magnetic lines of force. Also, percentages of the head of the flat plane perpendicular were decreased by the heparin treatment. These findings suggest that maintaining the structure of protamine in the chromatin is necessary for the sperm head to orient with its flat plane perpendicular, and maintaining the disulfide bond in the chromatin is necessary for the long axis of sperm to orient perpendicularly.