• Title/Summary/Keyword: Tritium Plant

Search Result 47, Processing Time 0.023 seconds

Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases

  • Vasyanovich, Maxim;Vasilyev, Aleksey;Ekidin, Aleksey;Kapustin, Ivan;Kryshev, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1176-1179
    • /
    • 2019
  • Measurements of activity concentrations of radionuclides in atmospheric releases were performed in 2017-2018 at vent stacks of seven Russian nuclear power plants. The selected instruments and research methods, with detection limits significantly lower than the existing detection limit of Russian NPPs routine control, allowed to reliably determine up to 26 radionuclides. Analysis of experimental data allows to determine the list of radionuclides for calculation the effective dose rates to public and the permissible annual discharge levels for each Russian NPP. Radiocarbon is determined as major contributor for the dose from the atmospheric releases of LWGR reactors - up to 98% for EGP-6 and RBMK-1000 (Smolensk NPP) reactors. For PWR reactors (VVER) radionuclides contribution to the annual dose from atmospheric releases is more complicated, but, in general, dose is formed by tritium, $^{14}C$ and noble gases. The special monitoring results with ranking of measured radionuclides according to their contribution to the effective dose makes it possible to optimize the list of controlled radionuclides in airborne releases of Russian NPPs from 94 to 8-16 for different NPPs.

Administrative dose control for occupationally-exposed workers in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Jung, Yoonhee;Kim, Jeong Mi;Cho, Moonhyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.351-356
    • /
    • 2021
  • Korean nuclear power plants (NPPs) have various radiation protection programs to attain radiation exposure as low as reasonably achievable (ALARA). In terms of ALARA, this paper provides a comprehensive overview of administrative dose control for occupationally-exposed workers in Korean NPPs. In addition to dose limits, administrative dose constraints are implemented to resolve an inequity of radiation exposure in which some individuals in NPPs receive relatively higher doses than others. Occupational dose constraints in Korean NPPs are presented in this paper with the background of how those values were determined. For pressurized water reactors, 80% and 90% of the annual average limit for an effective dose, 20 mSv/y, are set as the primary and secondary dose constraints, respectively. Pressurized heavy water reactors (PHWRs) have also established the primary and secondary dose constraints corresponding to 70% and 80% of the effective dose limit, and additional constraints for tritium concentration are provided to control internal exposure in PHWRs. Follow-up measures for exceeding these administrative dose constraints are also introduced compared to exceeding the dose limits. Finally, analysis results of dose distributions show how the implementation of administrative dose constraints impacted the occupational dose distributions in Korean NPPs during the years 2009-2018.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

Analysis of Minimum Detectable Activity Concentration of Water Samples and Evaluation of Effective Dose (물 시료의 최소검출가능 농도 분석과 유효선량 평가)

  • Jang, Eun-sung;Kim, Yang-su;Lee, Sun-young;Kim, Jung-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.857-862
    • /
    • 2020
  • In March 2011, a tsunami off Japan caused radioactive material that had seeped into the sea from the Fukushima nuclear accident to flow to the Pacific Ocean, causing pollution to sea life. For a comparative evaluation with the area surrounding the site of a nuclear power plant by the release of radioactive materials, an area 20 to 30 km away from the emergency protection plan area was selected as a comparative point considering weather conditions, population distribution, etc. In addition, the government intends to analyze the minimum detection radiation received by residents around the nuclear power plant and evaluate the effective dose. Analysis of tritium radiation from water samples showed that most of the samples were not detected and that 0.0014 % to 0.777 % of the annual legal standard of 1 mSv for the general public had little effect on the human body. Therefore, the measurement and analysis of water samples around the nuclear power plant site is expected to help relieve anxiety, such as exposure to the general public and neighboring residents due to radiation release.

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

Comparison of Measured and Predicted $^3H$ Concentrations in Environmental Media around the Wolsung Site for the Validation of INDAC Code (주면피폭선량 평가코드(INDAC)의 검증을 위한 월성원전 주면 삼중수소 농도 실측치와 예측치의 비교 평가)

  • Jang, Si-Young;Kim, Chang-Kyu;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2000
  • The predicted results of INDAC code were compared with measured $^3H$ concentrations in air and pine-needle around the Wolsung site. The optimal sets of input data to INDAC were in addition selected by comparing the measured values with the predicted values of INDAC based on various conditions such as the release modes of effluents into the environment, the classification of wind classes, and the consideration of terrain. The predicted $^3H$ concentrations in air and pine-needle were shown to have good agreement with measured values, although there are some limitations such as uncertainties in measured values, complex topology around the site, and the land-sea breeze effects. The assumption on the $^3H$ behavior in vegetables or plants that the ratio of $^3H$ concentration in plant water to $^3H$ concentration in atmospheric water is 1/2 was shown to be conservative in terms of the audit calculation performed by the regulator. It was also found that data sets based on mixed mode and no terrain data were not appropriate for the audit calculation ensuring the compliance with regulations. Thus, if the mixed mode is considered as the release mode of effluents into the environment, meteorological data measured at 58 m height and terrain data should be used to evaluate the atmospheric dispersion factor.

  • PDF

Delivery of Ti Plasmid into Nicotiana sanderae Protoplasts via Liposomes (Liposome을 이용한 Ti Plasmid의 꽃담배 원형질체내 도입)

  • Lim, Myung-Ho;Jeong, Jae-Dong;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.343-348
    • /
    • 1994
  • Ti plasmid of A. tumefaciens was labeled with $^3H-thymidine$, purified and encapsulated into phosphatidylserine (PS) and PS-cholesterol (Chol; 1 : 1 molar ratio) liposomes by lyophilization-rehydration method. PS was supplemented with 1 mole percent octadecyl rhodamine B for fluorometric measurement of PS. Liposomes entrapping $^3H-Ti plasmid$ were fused with Nicotiana sanderae protoplasts by treating with 5 mM $CaCl_2$ and 10% PEG. The fusion was evidenced by fluorescence microscopic technique. The amounts of Ti plasmid and PS associated with protoplasts were assayed by the radioactivity of $^3H-Ti plasmid$ and by the fluorescence of rhodamine B. About 7.9% of the PS liposome and 7.2% of PS-Chol liposome were fused with protoplasts. During the fusion process, about 30% of the liposomal contents of PS-Chol liposome was leaked, in contrast to about 60% leakage of its contents in PS liposome. Accounting the number of liposomes fused with protoplasts together with the encapsulation efficiency and the leakage of liposomal contents, it was calculated that ca. 1,700 Ti plasmid was transfered into one protoplast by the present method. This result may indicates that the present method transfers enough Ti plasmid into plant protoplast to elicit genetic transformation of plants.

  • PDF