• Title/Summary/Keyword: Triterpenoid Saponins

Search Result 58, Processing Time 0.024 seconds

Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits

  • Nyakudya, Elijah;Jeong, Jong Hoon;Lee, Nam Keun;Jeong, Yong-Seob
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.59-68
    • /
    • 2014
  • The extracts and pure saponins from the roots of Platycodon grandiflorum (PG) are reported to have a wide range of health benefits. Platycosides (saponins) from the roots of PG are characterized by a structure containing a triterpenoid aglycone and two sugar chains. Saponins are of commercial significance, and their applications are increasing with increasing evidence of their health benefits. The biological effects of saponins include cytotoxic effects against cancer cells, neuroprotective activity, antiviral activity, and cholesterol lowering effects. Saponins with commercial value range from crude plant extracts, which can be used for their foaming properties, to high purity saponins such as platycodin D, which can be used for its health applications (e.g., as a vaccine adjuvant). This review reveals that platycosides have many health benefits and have the potential to be used as a remedy against many of the major health hazards (e.g., cancer, obesity, alzheimer's) faced by populations around the world. Methods of platycoside purification and analysis are also covered in this review.

Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities

  • Li, Juan;Wang, Ru-Feng;Zhou, Yue;Hu, Hai-Jun;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.377-384
    • /
    • 2019
  • Background: Inflammation is widespread in the clinical pathology and closely associated to the progress of many diseases. Triterpenoid saponins as a key group of active ingredients in Panax notoginseng (Burk.) F.H. Chen were demonstrated to show antiinflammatory effects. However, the chemical structures of saponins in the leaves and stems of Panax notoginseng (PNLS) are still not fully clear. Herein, the isolation, purification and further evaluation of the antiinflammatory activity of dammarane-type triterpenoid saponins from PNLS were conducted. Methods: Silica gel and reversed-phase C8 column chromatography were used. Furthermore, preparative HPLC was used as a final purification technique to obtain minor saponins with high purities. MS, NMR experiments, and chemical methods were used in the structural identifications. The antiinflammatory activities of the isolated saponins were assessed by measuring the nitric oxide production in RAW 264.7 cells stimulated by lipopolysaccharides. Real-time reverse transcription polymerase chain reaction was used to measure the gene expressions of inflammation-related gene. Results: Eight new minor dammarane-type triterpene oligoglycosides, namely notoginsenosides LK1-LK8 (1-8) were obtained from PNLS, along with seven known ones. Among the isolated saponins, gypenoside IX significantly suppressed the nitric oxide production and inflammatory cytokines including tumor necrosis $factor-{\alpha}$, interleukin 10, interferon-inducible protein 10 and $interleukin-1{\beta}$. Conclusion: The eight saponins may enrich and expand the chemical library of saponins in Panax genus. Moreover, it is reported for the first time that gypenoside IX showed moderate antiinflammatory activity.

Anti-Inflammatory and PPAR Transactivational Effects of Oleanane-Type Triterpenoid Saponins from the Roots of Pulsatilla koreana

  • Li, Wei;Yan, Xi Tao;Sun, Ya Nan;Ngan, Thi Thanh;Shim, Sang Hee;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.334-340
    • /
    • 2014
  • In this study, 23 oleanane-type triterpenoid saponins were isolated from a methanol extract of the roots of Pulsatilla koreana. The NF-${\kappa}B$ inhibitory activity of the isolated compounds was measured in $TNF{\alpha}$-treated HepG2 cells using a luciferase reporter system. Compounds 19-23 inhibited $TNF{\alpha}$-stimulated NF-${\kappa}B$ activation in a dose-dependent manner, with $IC_{50}$ values ranging from $0.75-8.30{\mu}M$. Compounds 19 and 20 also inhibited the $TNF{\alpha}$-induced expression of iNOS and ICAM-1 mRNA. Moreover, effect of the isolated compounds on PPARs transcriptional activity was assessed. Compounds 7-11 and 19-23 activated PPARs the transcriptional activity significantly in a dose-dependent manner, with $EC_{50}$ values ranging from $0.9-10.8{\mu}M$. These results suggest the presence of potent anti-inflammatory components in P. koreana, and will facilitate the development of novel anti-inflammatory agents.

Chemical Constituents from Leaves of Acanthopanax henryi (II)

  • Li, Zhi;Li, Xiao Jun;Kwon, Ok Kyoung;Wang, Xiang;Zou, Qin Peng;Liu, Xiang Qian;Lee, Hyeong kyu
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.196-204
    • /
    • 2015
  • Nineteen compounds, including one organic acid (1), one anthraquinone (2), one amide (3), and sixteen triterpenoid saponins (4 - 19) were isolated from the leaves of Acanthopanax henryi (Oliv.) Harms (Araliaceae). Their structures were determined on the basis of physicochemical properties and spectral analyses (HR-MS and NMR). Among them, compounds 2, 3, 7, 12 and 19 were new within Araliaceae. Compounds 4, 5, 9 - 11, 13, 14, 16 and 18 were reported for the first time from the Acanthopanax genus. Except for compounds 4 and 9, other compounds were isolated from A. henryi (Oliv.) Harms for the first time. The rare anthraquinone, compound 2, significantly decreased the production of NO and the levels of other inflammatory factors, such as TNF-α and IL-6, in lipopolysaccharide (LPS)-stimulated macrophages in a dose-dependent manner. This is the first time to report anti-inflammatory effect of this compound.

Novel CRF1-receptor Antagonists from Pulsatilla koreana Root

  • Li, Wei;Noh, Hyojin;Lee, Sunghou;Lee, Min Ho;Lee, Eun Young;Kang, Sangjin;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.281-284
    • /
    • 2014
  • In this study, twenty-one oleanane-type triterpenoid saponins were isolated from a methanol extract of the roots of Pulsatilla koreana. Antagonistic activities were measured in these compounds by the aequorin based cellular functional assay system for the corticotropin releasing factor receptor (CRF1). Of them, compounds 7 - 10 showed the highest degree of CRF1 inhibition further at the concentration of $10{\mu}M$. Moreover, by the analysis based on the structure-activity relationship of isolated saponins, a sugar chain at C-3 and a carboxyl group at C-28, as well as a methyl group at C-23 seems to be key functional elements. To our knowledge, this is the first report on CRF1 inhibition of saponins from P. koreana.

Saponins from the Stem Bark of Kalopanax pictum var. magnificum (I)

  • Park, Myung-Ja;Hahn, Dug-Ryong
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.7-11
    • /
    • 1991
  • Three triterpenoid saponins were isolated from the methanol extract of the stem bark of Kalopanax pictum Nakai var. magnificum (Araliaceae). The structures of these saponins were identified as hederagenin 3-O-${\alpha}$-L-arabinopyranoside, hederagenin-3-O-${\alpha}$-L-rhamnopyranosyl$(1{\rightarrow}2)$-${\alpha}$-L-arabinopyranoside and 3-O-${\alpha}$-L-rhamnopyranosyl(1{\rightarrow}2)-${\alpha}$-L-arabinopyranosyl hederagenin 28-O-${\alpha}$-L-rhamnopyranosyl$(1{\rightarrow}4)$-${\beta}$-D-glucopyranosyl$(1{\rightarrow}6)$-${\beta}$-D-glucopyranosyl ester.

  • PDF

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Antimicrobial Effect of Oleanolic Acid and Ursolic Acid against Streptococcus downei (Oleanolic acid 및 Ursolic Acid의 Streptococcus downei에 대한 항균작용)

  • Park, Jae-Yoon;Kim, Hwa-Sook
    • Journal of dental hygiene science
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2011
  • Oleanolic acid (OA) and ursolic acid (UA) are triterpenoid compound present in many plants. This study examined the antimicrobial activity of OA and UA against Streptococcus downei. The antimicrobial activity was evaluated by the minimal inhibitory concentration (MIC) and time kill curves. The MIC values of OA and UA for S. downei isolated from the Korean population were $8{\mu}g/ml$. OA and UA had a bactericidal effect on S. downei ATCC $33748^T$ above $2{\times}MIC$, $16{\mu}g/ml$ and $8{\mu}g/ml$, respectively. The results suggest that OA and UA can be used in the development of oral hygiene products for the prevention of dental caries.

Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions

  • Mohanan, Padmanaban;Subramaniyam, Sathiyamoorthy;Mathiyalagan, Ramya;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-$\text\tiny{D}$-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.

Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean (콩 Saponin의 생리활성 기능과 함량변이)

  • 김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.