• Title/Summary/Keyword: Tripod gait

Search Result 8, Processing Time 0.021 seconds

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

A Basic Study of Hexapod Walking Robot (6족 보행로봇에 관한 기초연구)

  • Kang, D.H.;Min, Y.B.;Iida, M.;Umeda, M.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.

Algebraic Force Distribution in Hexapod Walking Robots with a Failed Leg (고장이 존재하는 육족 보행 로봇을 위한 대수적 힘 분배)

  • Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.457-463
    • /
    • 2009
  • In this paper, a novel foot force distribution algorithm for hexapod walking robots is presented. The considered hexapod robot has fault-tolerant tripod gaits with a failed leg in locked-joint failure. The principle of the proposed algorithm is to minimize the slippage of the leg that determines the stability margin of the fault-tolerant gaits. The fault-tolerant tripod gait has a drawback that it has less stability margin than normal gaits. Considering this drawback, we use the feature that there are always three supporting legs, and by incorporating the theory of Zero-Interaction Force, we calculate the foot forces analytically without resort to any optimization technique. In a case study, the proposed algorithm is compared with a conventional foot force distribution method and its applicability is demonstrated.

Fault Tolerant FTL Gaits for Walking over Irregular Terrain (비평탄 지형 보행을 위한 내고장성 FTL 걸음새)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.16-24
    • /
    • 2006
  • In this paper, fault-tolerant gait planning of a hexapod robot for walking over irregular terrain is presented. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. Based on the previously proposed fault-tolerant tripod gait for walking over even terrain, fault-tolerant follow-the-leader(FTL) gaits are proposed for a hexapod robot with a failed leg to be able to walk over two-dimensional rough terrain, maintaining static stability and fault tolerance. The proposed FTL gait can have maximum stride length for a given foot position of a failed leg, and yields better ditch crossing ability than the previously developed gaits. The applicability of the proposed FTL gait is verified by using computer graphics simulations.

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

A Milli-Scale Hexapedal Robot using Planar Linkages (평면기구 메커니즘을 이용한 소형 6족 로봇)

  • Kim, Dong-Sun;Jung, Sun-Pill;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2018
  • A small and lightweight crawling robots have been actively studied thanks to their outstanding mobility and maneuverability. Those robots can navigate into more confined spaces that larger robots are unable to reach or enter such as debris and caves. In this paper, we propose a milli-scale hexapedal robot based on planar linkage design. To make this possible, two necessary conditions for successful crawling are satisfied: thrust force from the ground and aerial phase while running. These conditions are achieved through a newly developed leg design. The robot has a pair of legs and each leg has three feet. Those feet alternatively moves based on 1DOF planar linkage. This linkage is installed at each side of the robot and finally the robot shows the alternating gait and aerial phase during running. As a result, the robot runs with the crawling speed of 0.9 m/s.

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.