• Title/Summary/Keyword: Triple band antenna

Search Result 73, Processing Time 0.019 seconds

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

Design and Manufacture of Modified Circular Ring antenna for WLAN/WiMAX Applications (WLAN/WiMAX 시스템에 적용 가능한 변형된 원형 링 안테나 설계와 제작)

  • Lim, Dae-Soo;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.268-275
    • /
    • 2014
  • In this paper, a dual-band circular ring monopole antenna with stub and ground slot for WLAN(Wireless Local Area Networks)/WiMAX(World interoperability for Microwave Access) applications. The proposed antenna is based on a planar monopole design, and composed of one circular ring of radiating patch, cross strip in circular ring, modified feed line, and two rectangular slot in the ground plane for triple-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are determined for WLAN/WiMAX application.

A Compact Triple Band Antenna for a Wireless USB Dongle

  • Lee, Seung-Hyun;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.185-188
    • /
    • 2012
  • A compact monopole antenna possessing triple resonance ($f_1$, $f_2$, $f_3$) characteristics for (USB) dongle applications is presented. The resonance characteristic $f_1$ is determined by the overall length of the antenna. The monopole antenna acts as the main radiator for $f_3$ as well as the coupling feeding structure for the parasitic resonators in $f_1$, $f_2$. The resonance characteristic $f_2$ is achieved by a combination of the capacitance formed by the coupling between the top and bottom parasitic substrate resonators and the inductance generated by a via bridging the two parasitic resonators.

A Design and Implementation of Multi-band Monopole Antenna for GPS/WiMAX/WLAN Applications (GPS/WiMAX/WLAN 시스템에 적용 가능한 다중밴드 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han;Lee, Deok-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1189-1196
    • /
    • 2015
  • In this paper, a microstrip-fed multiband monopole antenna for GPS(Global positioning system)/WiMAX(:Worldwide interoperability for microwave access)/WLAN(Wireless Local Area Networks) for applications was designed, fabricated and measured. The proposed antenna is based on a microstrip-fed structure, and composed of two rectangular double rings and L strips pair and then designed in order to get triple band characteristics. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS). The proposed antenna is made of $27.0{\times}54.0{\times}1.0mm3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 300 MHz (1.325~1.625 GHz), 400 MHz (2.275~2.675 GHz), and 600 MHz (3.15~3.75 GHz) covering the GPS/WiMAX/WLAN bands. Also, the proposed antenna measured gain and radiation patterns characteristics for required operating bands.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Design of Triple-Band Planar Monopole Antenna Having a Parasitic Element with Low SAR Using a Reflector (기생 소자를 이용한 3중 대역 모노폴 안테나 SAR 저감 설계)

  • Bong, HanUl;Hussain, Niamat;Jeong, MinJoo;Lee, SeungYup;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • In this study, a triple-band antenna that can be used in WLAN(Wireless Local Area Network) at 2.4 GHz, 5.8 GHz, and 5G at 3.5 GHz is fabricated. The proposed antenna uses a parasitic element to show the triple band, and the reflector is used at a distance of ${\lambda}/4$ from the antenna to reduce the Specific Absorption Rate(SAR). Its dimensions are $100{\times}75{\times}1.6mm^3$ and each parameter value is optimized for better performance and a lower SAR value. As a result, we obtained a bandwidth of 540 MHz(2.02~2.56 GHz), 390 MHz(3.39~3.78 GHz), and 1,210 MHz(5.56~6.77 GHz) based on the reflection loss factor of -10 dB. In addition, the SAR values of the antenna with reflector are observed to reduce below the SAR value of international standard.

Development of an Optimal Design Program for a Triple-Band PIFA Using the Evolution Strategy (진화 알고리즘을 이용한 삼중 대역 PIFA 최적 설계 프로그램의 구현)

  • Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Dong-Hun;Kim, Hyeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.746-752
    • /
    • 2009
  • In this paper, we deal with the development of an optimal design program for a triple-band PTFA(Planar Inverted-F Antenna) of 433 MHz, 912 MHz and 2.45 GHz by using evolution strategy. Generally, the resonance frequency of the PIFA is determined by the width and length of a U-type slot used. However the resonance frequencies of the multiple U slots are varied by the mutual effect of the slots. Thus the optimal width and length of U-type slots are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonance frequencies of the triple-band PIFA yielded by the optimal design program are 430 MHz, 910.5 MHz and 2.458 GHz that show a good agreement to the design target values.

A Study on an Optimal Design of a Triple-band PIFA using the Evolution Strategy (진화 알고리즘을 이용한 삼중대역 PIFA 최적 설계에 관한 연구)

  • Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Kyong-Ah;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.768-773
    • /
    • 2010
  • In this paper, we study on an optimal design of a triple-band PIFA (Planar Inverted-F Antenna) of 433 MHz, 912 MHz and 2.45 GHz by using evolution strategy. Generally, the resonant frequency of the PIFA is determined by the width and length of a U-type slot used. However the resonant frequencies of the multiple U slots are varied by the mutual effect of the slots. Thus the optimal width and length of U-type slots are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonant frequencies of initial model are 439.5 MHz, 981.5 MHz and 2.563 GHz. However, the resonant frequencies of the triple-band PIFA yielded by the optimal design program are 430.5 MHz, 907 MHz and 2.4515 GHz. Measured resonant frequencies are 433.5 MHz, 905.5 MHz and 2.454GHz, which show a good agreement with the simulation results.

Design of the Broadband PIFA with Multi-Band for SAR Reduction (다중대역을 가지는 SAR 저감용 광대역 PIFA 설계)

  • Choi Donggeun;Shin Hosub;Kim Nam;Kim Yongki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.66-77
    • /
    • 2005
  • This paper proposed a novel broadband PIFA(Planar Inverted-F Antenna) for IMT-2000/WLAN/DMB terminal. Two branch lines for meander line were utilized in order to improve the characteristics of PIFA which usually has a narrow band. The shorting strip between the ground plane and meander-type radiation elements were used in order to minimize the size of the antenna. The -10 dB return loss bandwidth of a realized antenna was $38.2{\%}$(1.84~2.71 GHz), which contains the broadband bandwidth with triple band. And the simulated and measured values of 1 g and 10 g averaged peak SAR on human head caused by the triple band PIFA mounted on folder-type handsets were analyzed and discussed. As a result, the measured 1 g and 10 g averaged peak SARs of PIFA were similar with the simulated values and were lower than the 1.6 W/kg and 2 W/kg of 1 g and 10 g averaged peak SAR limits.