Trip distribution is to connect travel demand for each OD pair based on travel cost, trip production and attraction derived from trip generation step. In real world the travel cost is a function of travel demand, but existing models could not fully consider such functional relation between travel cost and demand, which leads to an equilibrium in trip distribution model. This paper proves the equilibrium trip distribution by using gravity model. In order to obtain such equilibrium this paper also presents a solution algorithm based on fixed point theorem. The algorithm will be tested with an example and confirmed the equilibrium solution of trip distribution.
The objective of this study is to construct not only trip production and attraction in Pusan but also to study and examine appropriateness of the model positively. Depending on the estimation models of trip production and attraction of each zone that have been constructed in this study, it has been proved that the formula of multiple regression by the explanation variables like the indices of total employees, total students, floor spaces of residentials and floor spaces of educational and cultural areas within the study areas have very high explanatory capacity and appropriateness. It si considered that a study of method on new division, integration or omission etc. of the existing zones preceeding for reduction of calculation quantity and a study of estimation error have to be done for future study, if these models are used actually.
Estimation of trip distribution, estimated O-D matrix must satisfy the condition that the sum of trips in a row should equal the trip production, and the sum of trips in a column should equal the trip attraction. In most cases the iterative calculation for convergence is needed to satisfy this condition. Most of all present convergence of iterative methods may results a big difference between estimated value and converged value, and from this, the trip distribution patterns may be changed. This paper presents a new convergence of iterative method that comes closer to meeting the convergence condition and gives the maximum likelihood estimation for calculating a distribution patterns from the trip distribution estimation model. The newly developed method differs from existing methods in three important ways. First, it simultaneously considers both the convergence condition and the distribution patterns. Second, it computers simultaneous convergence of rows and columns instead of iterating respectively. Third, instead of using the growth rates to the trip production, trip attraction, it uses the differences between trip production and sum of trips in a row, and trip attraction and sum of trips in a column. Using 38 by 38 O-D matrix, this paper compared the Fratar method and the Furness method to the newly developed method and found that this method was superior to the other two methods.
Through the Standard of MCCB, the Adjustable Type Instant Trip Unit should NO trip at -20% of each current from $5{\times}In$ to $10{\times}In$ and trip +20% of those. In this paper, we obtain the attraction force between Fixing Magnet and Moving Armature. So we first made some samples. do experiments of weight, and simulated the modelling by 3D Maxwell S/W. With values of experiment and simulated values, we do design instant trip springs by using the ADAMS S/W of kinematic simulation. Finally we product the 250A Adjustable Instant Trip Unit, and it is very useful to our customers.
Kim, Tae-Ho;Rho, Jeong-Hyun;Kim, Young-Il;Oh, Young-Taek
International Journal of Highway Engineering
/
v.12
no.4
/
pp.93-100
/
2010
Trip generation is the first step in the conventional four-step model and has great effects on overall demand forecasting, so accuracy really matters at this stage. A linear regression model is widely used as a current trip generation model for such plans as urban transportation and SOC facilities, assuming that the relationship between each socio-economic index and trip generation stays linear. But when rapid urban development or an urban planning structure has changed, socio-economic index data for trip estimation may be lacking to bring many errors in estimated trip. Hence, instead of assuming that a socio-economic index widely used for a general purpose, this study aims to develop a new trip generation model by type based on the market separation for the variables to reflect the characteristics of various zones. The study considered the various characteristics (land use, socio-economic) of zones to enhance the forecasting accuracy of a trip generation model, the first-step in forecasting transportation demands. For a market separation methodology to improve forecasting accuracy, data mining (CART) on the basis of trip generation was used along with a regression analysis. Findings of the study indicated as follows : First, the analysis of zone characteristics using the CART analysis showed that trip production was under the influence of socio-economic factors (men-women relative proportion, age group (22 to 29)), while trip attraction was affected by land use factors (the relative proportion of business facilities) and the socio-economic factor (the relative proportion of third industry workers). Second, model development by type showed as a result that trip generation coefficients revealed 0.977 to 0.987 (trip/person) for "production" 0.692 to 3.256 (trip/person) for "attraction", which brought the necessity for type classifications. Third, a measured verification was conducted, where "production" and "attraction" showed a higher suitability than the existing model. The trip generation model by type developed in this study, therefore, turned out to be superior to the existing one.
As Korea is predicted to be a super-aged society in the near future, transport policies that internalize the elderly have also drawn attentions. Even though some studies have examined the travel by the elderly with various motives, it is, however, difficult to find references that deal with the unique spatio-temporal characteristics of senior trips. For example, the models by time period have represented the temporal property while a set of independent variables associated with urban infrastructure have addressed the spatial feature. This study was conducted under a trip attraction model for transit. The result shows that transit facilities, commercial areas, and hospitals are the dominant factors to explain the travel by the elderly, particularly during 09:00-17:00.
The KOTI(Korea Transport Institute) released the new version of KTDB(Korea Transport DataBase) in public. The new KTDB is different from the past KTDB in using the concept of trip generation and trip attraction instead of using the concept of Origin-Destination (OD), which was used in the past KTDB. Thus, the appropriate analysis method for future travel demand became necessary for the new type of KTDB. The method should be based on the concept of PA(Production-Attraction). This study focused on analysis of trip generation and trip distribution related to newly generated trips by future land developments. The study also described clearly the standardized forecasting process and methods with PA travel tables. The study showed that the analysis results with OD-based analysis can be different from the results with PA-based analysis in forecasting travel demand for a simple example case even though they used exactly same orignal travel data. Therefore, this study emphasized that a proper method should be applied with the new PA-based KTDB. It is necessary to prepare and disseminate guidelines of the proper forecasting method and application with PA-based travel data for practician.
Through the Standard of UL489, the Adjustable Type Instant Trip Unit should NO trip at 80% of each current from $5{\times}In$ to $10{\times}In$ and trip 130% of those. In this paper, we obtain the attraction force between Fixing Magnet and Moving Armature. we simulated the modelling by 3D Finite Element Method. With values of experiment and simulated values, in this paper, we show the method for set up the process of designing Instant spring.
When a MCCB Instant trip spring which is adjusted to notrip at -20% of each current from $5{\times}In$ to $10{\times}In$ and trip +20% of those is designed, we should know attraction force between Fixed Magnet and Armature. So we first made some samples, do experiments of weight, and simulated the modelling by 3D Maxwell S/W. With values of experiment and simulated values, we do design instant trip springs and repeat the above process. Finally we set up the Process of designing Instant spring. With it, we can save time and R&D cost.
A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.