• 제목/요약/키워드: Triode

검색결과 94건 처리시간 0.032초

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

Triode magnetron sputtering system의 제작 및 특성평가 (Characteristic evaluations and production of triode magnetron sputtering system)

  • 김현후;이무영;김광태;윤상현;유환구;김종민;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.787-790
    • /
    • 2003
  • A rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of $E{\times}B$ field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

  • PDF

TRIODE 장치를 이용한 건식 식각 특성에 관한 연구 (A Study on the Characteristics of TRIODE Etching)

  • 신재열;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.199-202
    • /
    • 1988
  • TRIODE etching characteristics are studied. 13.56 MHz is applied to the Lower electrode and 100 KHz to the upper electrode. Wafers are etched on the lower electrode and we investigate their characteristics and compare then with those of RIE. It shows TRIODE etch rate is much higher than that of RIE but the surface is more contaminated.

  • PDF

초소형 질량분석기를 위한 삼극관 구조의 탄소나노튜브 전자방출원 (A Carbon Nanotube Field Emitter with a Triode Configuration for a Miniature Mass Spectrometer)

  • 이유리;이기정;;이순일;양상식
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1001-1006
    • /
    • 2012
  • This paper presents a carbon nanotube (CNT) triode-structure field emitter as an ion source in a micro time-of-flight mass spectrometer(TOF-MS). In the ion source by field emission, the electrons emitted from cathodes under an electric field accelerated to the anode and ionize gas molecules by impact before arriving the anode. The generated positive ions are to be accelerated to the ion collector. Whereas most of ions are drawn to the cathodes in diode field emitters, a grid in the triode field emitter prevents the ions from being drawn to the cathodes. The triode field emitter is fabricated by micromachining. The cathode is composed of six CNT cylinders. The total size of the fabricated device is $8.0{\times}7.3{\times}1.9mm^3$. The anode and the grid current of the fabricated CNT field emitter were measured for various anode and grid voltages. When the anode and the grid voltages are 1000 V and 990 V, respectively, the emission current passing through the ionization region is 8.6 ${\mu}A$, which is a sufficient emission current for ionization and mass spectrometry.

SIMULATION OF THIN-FILM FIELD EMITTER TRIODE

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.651-654
    • /
    • 2002
  • We carried out 2-dimensional numerical calculations of electrostatic potential for triode field emitters with planar cathodes using the finite element method. As it turned out, the conventional triode structure with a planar cathode suffered from large gate current and wide spreading of emitted electrons. To circumvent these shortcomings, we proposed a new triode structure. By simply inserting a conducting layer of proper thickness on top of the cathode layer, we were able to modify the electric field distribution on the cathode surface so that low gate current and electron-focusing effect were achieved, simultaneously.

  • PDF

띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션 (Simulation of the Strip Type CNT Field Emitter Triode Structure)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조 (Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition)

  • 유완준;조유석;최규석;김도진
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

FIELD EMISSION FROM TRIODE FIELD EMITTER WITH PLANAR CARBON-NANOPARTICLE CATHODE

  • Park, Kyung-Ho;Seo, Woo-Jong;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.309-312
    • /
    • 2002
  • Triode field emitters with planar-carbon-nanopaticle (CNP) cathodes were successfully fabricated using the conventional photolithography and the hotfilament chemical vapor deposition. Electron emission from a CNP triode emitter with a 12-${\mu}m$-diameter gate hole started at the gate voltage of 45 V, and the anode current reached the level of ${\sim}120$ nA at the gate voltage of 60 V, respectively. For the quantitative analysis of the Fowler-Nordheim (F-N) type emission from a CNP triode emitter, we carried out 2dimensional numerical calculation of electrostatic potential using the finite element method. As it turned out, a radial variation of electric field was very important to account for the emission from a planar emitting layer. By assuming the graphitic work function of 5 eV for CNPs, we were able to extract a consistent set of F-N parameters, together with the radial position of emitting sites.

  • PDF

삼극형 CNT 전자원에 대한 신뢰성 평가 (The Reliability Evaluation about the Triode-Type CNT Emission Source)

  • 강준태;김대준;정진우;김동일;김지선;이형락;송윤호
    • 한국진공학회지
    • /
    • 제18권2호
    • /
    • pp.79-84
    • /
    • 2009
  • 삼극형(triode type) 전자 방출원을 프린팅된 CNT(Carbon Nanotube) 에미터를 이용하여 제작하였다. 후면노광(Back Exposure)방법으로 CNT 에미터의 높이를 균일하게 하고, 나노 Ag를 첨가하여 CNT와 전극 사이의 접착력 및 전기전도성을 높임으로써 고전압, 고전류 구동 시 신뢰성을 확보하였다. 게이트 높이가 에미터 길이에 비해 비교적 높은 매크로 게이트 구조를 사용하여 누설 전류가 적고 안정적인 구동이 가능하였다. 제작된 삼극형 전자 방출원은 DC 전압이 인가된 상태에서 일정시간동안 전계방출 전류를 측정하여 신뢰성을 평가하였다. 가열 배기 에이징(Aging) 과정을 거친 경우 약 12 시간동안 안정적인 전계방출 특성을 보였다. 이 때 게이트 누설전류는 약 10 % 미만이었다.