• Title/Summary/Keyword: Trichoplusia ni

Search Result 20, Processing Time 0.022 seconds

Basic Studies on the Apoptosis Mechanism of Trichoplusia ni Cell Line (Trichoplusia ni 세포의 apoptosis 메커니즘 규명을 위한 기초연구)

  • Lee, Jong-Min;Yang, Jai-Myung;Lee, Youn-Hyung;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To elucidate the apoptosis mechanism of Trichoplusia ni cell, fundamental studies for apoptosis induction and suppression were performed. Hygromycin B, a known inducer of apoptosis, started the inhibition of T. ni cell growth at $200\;{\mu}/ml$ concentration. Furthermore, at $400\;{\mu}/ml$ concentration, DNA fragmentation was detected on day 2 of incubation. Although both dexamethasone and sodium butyrate inhibited T. ni cell growth, DNA fragmentation was not detected by both treatments. Also, when apoptosis induced T. ni cells with $200\;{\mu}/ml$ hygromycin B were treated with caspase inhibitor (Ac-DEVD-CHO), the apoptotsis was suppressed by 36%. In addition, N-acetylcysteine, another apoptosis repressor, also inhibited the apoptosis of T. ni cells. In order to express the anti-apoptosis gene (bcl-2), T. ni cells were transiently transformed with bcl-2 and its expression was confirmed by western blot analysis. These results showed the potential of developing new insect cell lines with suppressed apoptosis.

  • PDF

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Comparative Study on Trichoplusia ni Tn 5B1-4 Cells and Bombyx mori BmN Cells for Recombinant Endostatin Production

  • Sohn, Bong-Hee;Lee, Jong-Min;Kang, Pil-Don;Lee, Sang-Uk;Kim, Yong-Soon;Chung, In-Sik
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.197-201
    • /
    • 2003
  • The recombinant plasmids harboring a heterologous gene coding mouse endostatin were transfected and expressed stably in Trichoplusia ni Tn 5B1-4 cells and Bombyx mori BmN cells, respectively. Recombinant endostatin expressed in the stably transformed Tn 5B1-4 and BmN cells was secreted into the medium. BmN cells are relatively lower in maximum cell growth and recombinant endostatin production than Tn 5B 1-4 cells. Recombinant endostatin was also purified to homogeneity using a simple one-step ${Ni^2+}$ affinity fractionation method. Purified recombinant endostatin inhibited endothelial cell proliferation in a dose-dependent manner. The concentration at half-maximum inhibition $({ED_50})$ for recombinant endostatin was approximately 0.35 ${\mu}g$/ml.

Basic Studies on the Apoptosis Mechanism of Trichoplusia ni cell line

  • Lee, Jong-Min;Sohn, Bong-Hee;Kim, Yong-Soon;Kang, Pil-Don;Lee, Sang-Uk;Chang, Seung-Jong;Chung, In-Sik
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.41-41
    • /
    • 2003
  • To elucidate the apoptosis mechanism of Trichoplusia ni cell, fundamental studies for apoptosis induction and suppression were performed. Hygromycin B, a known inducer of apoptosis, started the inhibition of T ni cell growth at 200 ug/$m\ell$ concentration. Furthermore, at 400 $\mu\textrm{g}$/$m\ell$ concentration, DNA fragmentation was detected on day 2 of incubation. (omitted)

  • PDF

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

Pathogenicity of Spodoptera exigua Nuclear Polyhedrosis Virus and Cross Infection of Baculoviruses to the Beet Armyworm, S. exigua (Lepidoptera: Noctuidae) (파밤나방 핵다각체병바이러스의 병원성과 곤충간상바이러스의 파밤나방에 대한 교차감염에 관한 연구)

  • 임대준;최귀문;강석권
    • Korean journal of applied entomology
    • /
    • v.30 no.3
    • /
    • pp.212-218
    • /
    • 1991
  • Pathogenicity of Spodoptera exigua nuclear polyhedrosis virus (SeMNPV) against the host insect and 8 species of lepidopterous insects and cross infection of baculoviruses to third instar of S. exigua larvae were studied to determine as a biocontrol agent for S. exigua. The median lethal concentrations($LC_{50}$)of the SeMNPV to egg mass was $2.855\times10^5$ PIBs/ml and higher than that to the larvae of S. exigua. Mortality of the SeMNPV in third ins tar larvae was more increased than that in first and fifth instar of S. exigua larvae by 1.16 and 4.11 times, respectively. The median lethal times($LT_{50}$) to $1.56\times10^6$ PIBs/ml was in the range of 4.25 to 5.04 days. Infectivity of the SeMNPV against eight species of lepidopterous insects was showed only in the host insect, S. exigua. Autographa cali/ornica MNPV, Mamestra barassicae MNPV, and Trichoplusia ni MNPV were cross-infected to third instar of S. exigua larvae among ten of baculoviruses tested.

  • PDF

Production of Recombinant Polyhedra Containing Cry1Ac Fusion Protein in Insect Cell Lines

  • Kim, Jae-Su;Choi, Jae-Young;Roh, Jong-Yul;Lee, Han-Young;Jang, Seung-Sik;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.739-744
    • /
    • 2007
  • Insect cell lines and the control of infection for obtaining the maximum amount of polyhedrin-Cry1Ac-polyhedrin fusion protein from Bactrus in monolayer and suspension culture systems were tested. Growth rates of the Trichoplusia ni(High-Five) cell line in both culture systems were better than the other insect cell lines, Spodoptera frugiferda(Sf-9, Sf-21), Trichoplusia ni(Tn5), and Spodoptera exigua(Se301). The expression of the fusion protein in a monolayer culture showed that Se301 cells were 2.3-4.8 times more productive on a per cell basis than the other cell lines. However, in suspension culture, only High-Five cells were productive. High-Five cells infected with Bactrus at a multiplicity of infection(MOI) of 5 and a cell density of $3.0{\times}10^5$ cells per ml were more productive than the other infection condition in a suspension culture suitable for a large-scale production of baculovirus. In conclusion, for the large-scale production of Bactrus in vitro, High-Five cells showing good growth and high productivity are suitable.

Anti-Parasitic Activity of Lespedeza cuneata Extract on Causative Agent of Nosemosis Type C, Nosema ceranae

  • Song, Hyunchan;Kim, Hyekyung;Kim, Ki-Young
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.137-140
    • /
    • 2019
  • Although honeybees (Apis mellifera) are crucial for maintenance of the ecosystem, population of honeybee has been steadily decreasing due to diseases including nosemosis. Nosemosis is a disease caused by Nosema ceranae and is now considered as a major threat to honeybees. N. ceranae is a microsporidian that stays in form of spore even before the infection, which makes it harder to control than other pathogens. People are now aware of this parasite, however, cure and preventive candidates for nosemosis are hardly found until today. In this study, in vitro experiment of Lespedeza cuneata treatment to prevent nosemosis were done using Trichoplusia ni cell line, BTI-TN5B1-4. Normal T. ni cells exhibited round shape without abnormal size. On the other hand, when N. ceranae were treated, cells deteriorated and some cells abnormally enlarged due to N. ceranae infection. Interestingly, treatment of T. ni cells with L. cuneate extract protected abnormal cell shape induced by N. ceranae infection to normal shape. Some N. ceranae spores were observed outside of the cells. Effective concentration range for N. ceranae control were experimented. Lowest concentration which can control nosemosis were 50 ㎍/mL. When the concentration of L. cuneata extract was exceeded 200 ㎍/mL, cytotoxicity started to show up.